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This article presents an extension of coupled volume-of-fluid and level-set method (VOSET) for simulat-
ing free surfaces flows in arbitrary 2D polygon meshes. A series of techniques are introduced for geomet-
ric calculations in convex polygons. Newton iteration is adopted for the interface reconstruction in
polygons, and incremental remapping approach is employed for the propagation of the volume fractions.
The interface tracking test results suggested a second order accuracy in mixed and hexagonal grids. For
the validation purpose, a Rayleigh-Taylor instability problem, a liquid column collapse problem and a sin-
gle bubble rising problem were numerically studied, and the obtained results show excellent agreements
with experimental data and benchmark solutions in literatures. Finally the proposed VOSET method was
applied in simulating the working process of a flow-focusing microfluidic droplet generator.
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1. Introduction

Liquid-gas multiphase flow appears widely in industrial pro-
cesses such as bubbly flow, droplet generation, combustion and
refrigeration. It has been a difficult class of problem due to the
large deformation and topology change of the liquid-gas interface
as well as their impact on the fluid flow. The fast development of
computer performance has provided numerical simulation as an
important tool for studying those phenomena. A number of
advanced simulation approaches have been developed in recent
decades. Particularly, interface tracking method has been develop-
ing very fast which can describe the position of the interface and
tracks its motion with flow. It can provide high-fidelity numerical
results with details for understanding the mechanisms behind, and
is of great help in developing closure correlations [1–3] for numer-
ical models simulating multiphase flows in larger scales such as
Euler-Euler model.

A considerable amount of studies have been made in the devel-
opment of interface tracking methods. The most commonly used
approaches among them are probably front-tracking method [4],
volume-of-fluid (VOF) method [5,6] and level-set (LS) method
[7,8].

Owing to the definition of the volume fraction, VOF method has
a superior performance in maintaining mass conservation. How-
ever, it suffers from the disadvantage of low accuracy in the calcu-
lations of interface normal and curvature. On the contrary, more
accurate interface normal and curvature can be achieved by LS
method due to the smoothed feature of the level-set function,
but loss/gain of mass usually appears, especially when the inter-
face experiences large topology changes. Furthermore, the level-
set function will be distorted with the progress of the interface
tracking, and therefore, a reinitialization procedure is required to
recover its signed-distance feature [9].

After noticing the complementary advantage and disadvantage
between VOF and LS, some researchers developed their combina-
tions. Sussman and Puckett [10] developed an interface tracking
algorithm, CLSVOF, which first combined the advantages of VOF
and LS. In this method, the interface movement is handled by
VOF for the mass conservation; and level-set function, due to its
smoothed feature near interface, is applied in calculating interface
normal and curvature as well as in smoothing the discontinuous
physical quantities. This method was later extended for three
dimensions by Son [11], and for adaptive triangular grid by Yang
and James [12]. However, CLSVOF brought in many complexities
and requires more computational resources since the equations
for the level-set function and volume fraction both need to be
solved.

Sun and Tao [13] introduced another hybrid method, VOSET, for
simulating incompressible free surface flows. It provides a simper
approach than CLSVOF to combine VOF and LS. In this method,
the level-set is geometrically calculated based on the reconstructed
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interfaces, and thus there is no need to solve its advection equa-
tion. The calculation approach for the level-set function used in
VOSET gives some benefits compared with the way used in CLSVOF
method. Firstly, the accuracy of the level-set function can be guar-
anteed without the use of high-order scheme or the process of
reinitialization [14], since the level-set function is calculated
directly based on the definition of signed distance function. More-
over, the direct calculation approach allows the level-set function
to be calculated only in a local domain for saving computational
resources, as long as sufficient inputs can be provided for the cal-
culations of interface normal and curvature; The local domain typ-
ically refers to a narrow band around the phase boundary.

The originally proposed VOSET method [13] is based on two-
dimension structured grid, and some progresses were made
regarding its extension in grid type. Wang et al. [15] implemented
VOSET in adaptive quadtree mesh for saving computational
resources. Using a set of geometrical techniques, Ling et al. [16]
extended VOSET to three dimensional Cartesian grid, where the
basic calculation procedures are identical to those in 2D VOSET
[13]. Sun et al. [17] integrated a fully implicit pressure-velocity
algorithm, IDEAL [18], into VOSET in three dimensions to make it
support liquid-gas multiphase flow with ratios of density and vis-
cosity up to 1000. VOSET has been used in numerous multiphase
flows with phase change [19–22], magnetic field [23,24] and elec-
tric field [25].

The progressively extensive application of CFD is requiring
numerical methods to support unstructured grid such that compli-
cated geometries in industrial equipment can be modeled. Balcázar
et al. proposed a conservative level-set method [26] and a coupled
VOF/LS method [27] in the framework of unstructured grid, and
various 2D and 3D problems were studied for their validations.
Singh and Premachandran [28] developed a CLSVOF method in
unstructured grid considering quadrilateral and triangular cells,
and the proposed method was applied for film boiling simulation.

As for VOSET method, only a few studies were reported regard-
ing its extension to unstructured grids. Cao et al. developed a
VOSET method in unstructured grids composed of triangular cells
[14,29], in which 11 different cases were considered in calculating
volume fluxes across cell faces. Cao et al. [30] later extended VOSET
to unstructured quadrilateral cells. However, any of those exten-
sions is focused on a specific grid type and cannot adapt to many
other complicated situations encountered. For example, some
complicated domains need to be cut into blocks with each of them
discretised by a specific type of grid, which results in a mixed mesh
containing various types of grid. Polygonal grid has been shown to
reach the same level of accuracy with less grid numbers than trian-
gular grid and can fit different complicated regions with more flex-
ibility [31]. It is typically composed of polygons with more than
four edges. The present article presents a general way to extend
VOSET in the aim of making it adaptive to computational grid com-
posed of arbitrary convex polygons.

The rest of the present article is organized as follows. Section 2
presents the governing equations describing free surface flows.
Section 3 describes the numerical methods associated in VOSET,
and is mostly focused on how to deal with arbitrary polygon in a
general way. Some numerical tests for the validation purpose are
presented and discussed in Section 4. Finally, some conclusions
are drawn in Section 5. Additionally, some associated geometric
techniques are described in the Appendixes.

2. Governing equations

Considering the effects of gravity and surface tension, the con-
tinuity and momentum equations for incompressible liquid-gas
free surface flow can be written as:
r � u ¼ 0; ð1Þ

@u
@t
þr � u� uð Þ ¼ � 1

q
rpþ 1

q
r � lruþ lruT

� �þ g þ 1
q
f st : ð2Þ

In Eq. (2), f st corresponds to the effect of surface tension. Using
CSF model [32], it can be transformed into volume force in a nar-
row region around liquid-gas interface expressed as:

f st ¼ rjrH; ð3Þ
in which r and j refer to the surface tension coefficient and inter-
face curvature, respectively. H is a smoothed Heaviside function
varying from 0 (in the gas phase) to 1 (in the liquid phase). The fluid
density q and viscosity l are calculated depending on the smoothed
Heaviside function such that they take their individual values in gas
and liquid phases and can vary smoothly across the interface.
Concretely,

q ¼ Hql þ 1� Hð Þqg l ¼ Hll þ 1� Hð Þlg : ð4Þ
Following the work by Sun and Tao [13], the smoothed Heav-

iside function depends only on the level-set function (denoted by
/), and it is specifically written as:

H /ð Þ ¼
0 / < ��
1
2 1þ /

� þ 1
p sin p/

�

� � �� 6 / 6 �

1 / > �

8>>><
>>>:

ð5Þ

in which � is an adjustable parameter determine the thickness of
the region around interface where the discontinuous fluid proper-
ties are smoothed. In the present study, we set � ¼ 1:5DV1=2, in
which DV is the average volume of the 2D mesh, and thus DV1=2

can be regarded as a characteristic length of the mesh size.
VOF method defines the volume fraction, denoted by C, as the

volume proportion of the primary phase in a computational ele-
ment. For any fluid particle, the phase type does not change as it
moves, the volume fraction therefore satisfies:

@C
@t
þ u � rC ¼ 0 ð6Þ

In VOSET method, a level-set function is geometrically gener-
ated from the reconstructed interfaces in VOF and its determina-
tion method is presented in the next section.

3. Numerical methods

3.1. Calculation of level-set function

An important feature of VOSET is calculating the level-set func-
tion in a geometrical way from a given volume fraction. In order to
get a level-set function geometrically, one needs the interface be
reconstructed as a set of line segments at first. On the other hand,
however, accurate interface reconstruction requires accurate inter-
face normal, which is supposed to be computed by level-set func-
tion. In VOSET, the mutual dependence between level-set function
and reconstructed interfaces is resolved by iterative calculation
with the initial interface normal estimated by the volume fraction.
Since the detailed procedures of level-set function in VOSET have
been described in Ref. [13]. We will only introduce it in brief,
and pay more attention on the new calculating techniques
required in polygonal grids. Given a volume fraction, the following
steps are carried out iteratively.

Step 1: Reconstruct interface as line segments.
The interface normals are first calculated in elements with

0 < C < 1 by the existing level-set function using least square
approach (see Section 3.3 for the details).
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n ¼ r/kr/k ð7Þ

In the first iteration, since no level-set function is available, the
volume fraction is used for the calculation of the interface normal,
namely

n ¼ rCkrCk : ð8Þ

The phase boundary is then reconstructed as a set of line seg-
ments using Newton iteration approach (see Section 3.2 for the
details).

Step 2: Mark elements around interface.
The purpose of this step is to save computational resources

since in free surface flow simulations the level-set function is
required only around the phase boundary. To complete this proce-
dure, one need to use an algorithm to search elements within a cer-
tain distance from an interfacial element containing reconstructed
interface. In structured grids, since the data structure of multidi-
mensional array can be used for fields, the element-marking proce-
dure can be simply completed by looping over array indexes within
certain ranges. In unstructured grid, however, each element can
only reach its immediate neighbors directly due to the different
data structure used. A straightforward approach is to loop over
the entire element list in the grids and check the distance to the
given interfacial element. However, it will take remarkably greater
computational time since for each interfacial element all the ele-
ments need to be visited. In order to save the computational time,
a local-searching algorithm is proposed for element-marking in
unstructured grids, and the details are illustrated in Appendix A.

Step 3: Calculate distance function in marked elements.
The distance function at an element refers to the minimum dis-

tance from its center to the nearby interface, and it is also the abso-
lute value of the level-set function. Numerically, the minimum
distance is achieved by computing the distances to nearby recon-
structed line segments, and then choosing the smallest one among
Fig. 1. Determining the sign of level-set function: (a) reconstructed interfaces in rectang
when C ¼ 0:5; (c) criterion for the sign of level-set function in unstructured grid.
them. Note, this procedure is carried out only in elements marked
in Step 2.

Step 4: Sign the distance function to get the level-set function.
The sign of level-set function at a given point depends on which

phase it locates in. In orthogonal structured grids, it is simply
determined by seeing whether or not the corresponding volume
fraction is greater than 0.5 [13,16]. It is based on the fact that,
when C ¼ 0:5 in a rectangular element, the reconstructed interface
passes through the element center regardless of the interface ori-
entation (see Fig. 1(a)). However, it no longer holds in non-
rectangular elements. As an example, a regular-triangle element
with C ¼ 0:5 was sketched in Fig. 1(b), where the element center
may locate in the gas phase, the liquid phase, and may locate on
the interface, depending on the interface normal.

In the present study, the sign of the level-set function is deter-
mined by a new criterion. As Fig. 1(c) shows, for an interfacial ele-
ment with 0 < C < 1, the level-set function is set positive if
dPI � n P 0, in which P and I are respectively the centres of the ele-
ment and the reconstructed interface. In case of dPI � n < 0, the
level-set function is set negative. To be specific, the calculation
for the sign of the level-set function can be expresses as:

sign /ð Þ ¼
�1 C ¼ 0
sign dPI � nð Þ 0 < C < 1
1 C ¼ 1

8><
>: ð9Þ

Note, Steps 1—4 introduced above need to be proceeded itera-
tively. Based on the studies by Sun and Tao [13] and Cao et al.
[14], we set the number of iterations as 3 for the balance between
the requirement in precision and the computational cost.

3.2. Interface reconstruction

Assuming the interface normal is known in prior, the VOF inter-
face reconstruction in 2D unstructured grid can be summarized as
the problem sketched in Fig. 2(a). Given a interface normal n, how
ular element when C ¼ 0:5; (b) reconstructed interfaces in regular-triangle element



Fig. 2. Interface reconstruction in a polygon element using Newton iterative method: (a) area of clipped polygon and its derivative with respect to n; (b) an example of
algorithm divergence.
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to find a straight line perpendicular with the direction of interface
normal such that the shaded area is equal to a given value.

A straight line can be uniquely described by its normal n and a
point, denoted by Q, on it, which is expressed as:

l ¼ l n;Qð Þ: ð10Þ

Since the normal is a given value, we only need to find the coor-
dinate of point Q, denoted by rQ , to determine the straight line.
Since we need to find a way to handle all types of convex polygons,
the way of considering all possible interface locations in a cell
[14,30] can no longer be used. Instead, we employed Newton iter-
ative method for the interface reconstruction. As Fig. 2(a) shows,
starting from the element center P, point Q is achieved by search-
ing along the interface normal:

rQ ¼ rP þ nn ð11Þ

Therefore, the interface reconstruction problem is converted to
calculating the value of n in Eq. (11). A specific value of n can
determine the straight line. Meanwhile, it corresponds to an area
located behind the straight line and a length of the line segment
locating inside the polygon, and they are denoted by A nð Þ and
L nð Þ, respectively. The Newton iteration for the present problem
requires the derivative of A nð Þ with respect to n. From a geometri-
cal point of view, one can find the derivative takes the value of
L nð Þ. Therefore, the iterative approach for calculating n can be
expressed as:

nnþ1 ¼ nn þ A nnð Þ � CPVP

L nnð Þ ð12Þ

in which CP and VP are individually the volume fraction and the area
of the element centering at point P. The initial value of n is specified
as 0. In each iteration, we need to carry out calculations for: (1) the
area of a polygon, and (2) clipping a polygon with a straight line.
The calculation techniques are presented in Appendix B. The final
line segment obtained in the last iteration is provided as the
approximation of the phase boundary.

Although clipped polygon area, A nð Þ, is monotonic increasing
with n, the use of Newton iterative method may result in
divergence under some special situations, and Fig. 2(b) shows an
example of such case. In the present study, the Newton iterative
method is combined with bisection method to guarantee conver-
gence. The detailed process of interface reconstruction is shown
in Algorithm 1.
Algorithm 1. Newton iterative method bounded by bisection
method for interface reconstruction.

Require: polygonal element P, volume fraction CP , interface
normal n

Ensure:n
1: n 0
2: nl  nmin ¼ xmin � rPð Þ � n
3: nr  nmax ¼ xmax � rPð Þ � n
4: whilek area P0ð Þ

area Pð Þ � CPk > �do
5: rQ  rP þ nn
6: Clip polygon P with l n; rQ

� �
to get result polygon P0 and

a line segment L

7: ntemp ¼ nþ area P0ð Þ�area Pð ÞCP
length Lð Þ

8: if ntemp 2 nl; nr½ � then
9: n ntemp

10: else
11: if area P0ð Þ > area Pð ÞCP then
12: nr  n
13: else
14: nl  n
15: end if
16: n 1

2 nl þ nrð Þ
17: end if
18: end while
By using Newton iterative method for interface reconstruction,
it was found the relative error can drop down to the level of 10�10

within only five iterations for most cases, which indicates a faster
convergence rate than Secant method used in a previous study by
the present authors [16]. It should be noted that, although the
algorithm is described on 2D polygon elements, it can be extended
to three dimensions based on the same idea. In 3D cases, one need
to consider a polyhedron element and a clipping plane, and A nð Þ
and L nð Þ in Eq. (12) denote the volume of the truncated polyhedron
and the area of the clipping plane inside the polyhedron, respec-
tively. Indeed, clipping a polyhedron may require a more compli-
cated algorithm. Newton iterative method was recently applied
by Chen and Zhang [33] for interface reconstruction in the
momentum-of-fluid (MoF) method [34] on polyhedron grids. Also,
their numerical test suggests faster rate of convergence than
Secant/bisection method. The absolute error can drop down to
the level of 10�12 after only 3–5 iterations.
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3.3. Interface normal and curvature

After obtaining a level-set function, the interface normal is cal-
culated by (7). The gradient of the level-set function appearing in
Eq. (7) is calculated by least square method. As an example illus-
trated in Fig. 3, for element P, its nearby elements sharing at least
one vertice (such as element N in Fig. 3) are associated in the cal-
culation. The gradient of level-set function at element P is com-
puted by an optimization procedure finding the minimum value
of an error function defined as

EP ¼
XNB Pð Þ

i¼1
xi /P þr/P � Dri � /Ni

h i2� �
; ð13Þ

in which Dri ¼ rP � rNi
, and xi is the weighting factor given by

xi ¼ 1
krP � rNi

k ð14Þ

For the minimum value of EP , the following condition should be
satisfied:

@EP

@ @/
@x

� �
P

¼ @EP

@ @/
@y

� �
P

¼ 0; ð15Þ

and the gradient of /, namely the interface norm, is obtained by
solving

XNB Pð Þ

i¼1
xiDx2i

XNB Pð Þ

i¼1
xiDxiDyi

XNB Pð Þ

i¼1
xiDyiDxi

XNB Pð Þ

i¼1
xiDy2i

2
666664

3
777775

@/
@x

� �
P

@/
@y

� �
P

2
4

3
5 ¼

PNB Pð Þ
i¼1 xiDxiD/iPNB Pð Þ
i¼1 xiDyiD/i

" #

ð16Þ
where D/i ¼ /Ni

� /P .
From the obtained interface norm, the interface curvature is

then computed as its divergence.

j ¼ �r � n ð17Þ
The divergence of a field at an element center can be regarded

as the averaged value over the control volume and according to
Green-Gauss theorem, it can be estimated by its values at faces.
Therefore, the interface curvature at element P is obtained through
Fig. 3. Element stencil used for gradient calculation using least square method.
jP ¼ � r � nð ÞP ’ �
1
VP

Z
XP

r � ndV ’ � 1
VP

X
f

nf � Sf ð18Þ

where Sf denotes the outward-pointing area vector of a face on ele-
ment P. nf is the interface norm on the face are estimated by linear
interpolation. As an example, the interface norm at face f in Fig. 3 is
calculated as

nf ¼ wnP þ 1� wð ÞnN

kwnP þ 1� wð ÞnNk ð19Þ

where w ¼ kdNf k
kdNf kþkdPf k.

3.4. Flow solver for incompressible flow

The momentum equation was discretised by finite volume
method (FVM) [35,36] in collocated unstructured grid. SIMPLE
algorithm [36] was employed for solving the fluid flow. By inte-
grating the momentum equation over an element, a discretised
form can be expressed as:

uc�u0
c

Dt þ 1
DV

X
f

u�f � Sf

� �
uf � 1

DV

X
f

lf ruð Þf � Sf ¼

� 1
qc
rp�ð Þc þ 1

DV

X
f

lf ru�ð ÞT
� �

f
� Sf þ g þ 1

qc
f st

ð20Þ

where superscripts 0 and � individually denote variables in the pre-
vious time step and in the previous iteration, and subscripts c and f
represent variables on cell centre and on cell face, respectively.

MINMOD scheme [37] is used for interpolating uf appearing in
the 2nd term (convection term) on the left-hand-side of Eq. (20).
Virtual-element technique [38] is adopted in constructing high-
order schemes for the convection term in unstructured grid. As is
illustrated in Fig. 4, before estimating uf , the velocity at the virtual
element U is estimated by:

uU ’ uD � 2 ruð ÞC � dCD ð21Þ
Central-difference scheme is used for estimating the 3rd term

(diffusion term) of Eq. (20). As Fig. 5 shows, considering the mesh
non-orthogonality, the face area vector Sf is divided into two parts,
namely Ef and T f , in which Ef is parallel with dON . Therefore,
ruð Þf � Sf can be estimated by:

ruð Þf � Sf ¼ ruð Þf � Ef þ ruð Þf � T f ’ uN � uO

kdONk kEf k þ ru�ð Þf � T f

ð22Þ
The discretised momentum equation can be organized as a liner

equation expressed as:

aPu�P ¼
X

anbu�nb þ b� 1
qP
rp ð23Þ
Fig. 4. Virtual-element technique used in constructing high-order schemes for
convection term in unstructured grid.
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SIMPLE algorithm introduces a pressure correction field (p0) and
a velocity correction field (u0)

uP ¼ u�P þ u0P ; pP ¼ p�P þ app0P ; ð24Þ
and assumes:

u0P ¼ �
1

qPaP
rp0: ð25Þ

From Eqs. (24) and (25) and the continuity equation (Eq. (1)),
the equation for the pressure correction field can be established as:

r � 1
qPaP

rp0
� 	

¼ r � u�: ð26Þ

The FVM discretization for r � u� in Eq. (26) requires u� on cell
faces. To avoid decoupling between velocity and pressure fields,
Rhie-Chow interpolation [39] was applied when calculating veloc-
ity on cell faces.

u�f ¼ u�f �
1

qPaP

� 	
f

rpð Þf � rpð Þf
� �

ð27Þ

Given the velocity and pressure fields at the previous time step,
SIMPLE algorithm proceeds an iteration composed of the following
steps:

Step 1: Discretize and solve the momentum equation to get a
intermediate velocity field u�;

Step 2: Interpolate the velocity field from cell centres to cell
face using Rhie-Chow interpolation (Eq. (27)).

Step 3: Discretize and solve the pressure correction equation
(Eq. (26));

Step 4: Using the obtained p0, correct pressure field at cell cen-
tres and correct the velocity field both on cell centres and faces.

Step 5: Calculate and evaluate the errors of momentum equa-
tion and the continuity equation. If the errors are decreased down
to the preset tolerances, the algorithm moves to the next time step
and the corrected velocity field is saved as u0; otherwise it goes
back to Step 1, where the corrected fields of pressure and velocity
are used for the next iteration.

Note, in the present study, no under-relaxation is used owing to
the presence of the transient term. The relaxation factor in correct-
ing the pressure field (Eq. (24)) is specified as ap ¼ 0:5.

3.5. Incremental remapping approach

To update the volume fractions, unsplit Eulerian VOF schemes
use velocity on grid faces to calculate phase fluxes through them.
However, such face-velocity based schemes will result in overlaps
between nearby cell faces [40], unless more complex flux polygon
constructions, such as the one proposed by López et al. [41], are
made. An alternative approach is using Lagrange schemes based
on velocity at grid nodes. As an example, incremental remapping
approach was proposed by Dukowicz et al. [42] for solving advec-
Fig. 5. Discretization of the diffusion term: ruð Þf � Sf is divided into orthogonal part
and non-orthogonal correction.
tion equations. In a 2D structured grid, the present authors com-
bined this method with interface reconstruction to track the
movement of phase boundary in solid–liquid phase change [22].
In that paper, some other advantages of node-velocity based
Lagrange scheme, such as automatically guaranteeing bounded-
ness and avoiding phase wisps, have been discussed. In the present
study, incremental remapping approach is employed based on a
framework of 2D polygonal computational grid, and the calculation
procedure is briefly presented as follows.

With reconstructed interfaces inside grid elements and given
velocity profiles at grid nodes (see Fig. 6), let us consider phase
transportation in element P. For vertices surrounding element P,
incremental remapping approach builds up corresponding virtual
points (marked as empty circles in Fig. 6) which are expected to
reach the locations of the vertices in Dt. The ith virtual point is cal-
culated as

r0i ¼ ri � unode
i Dt ð28Þ

in which ri represent the location of the ith vertice, and unode
i is the

given node velocity. As Fig. 6 shows, we assume a polygon sur-
rounded by the virtual points, name as departure element, will
occupy element P in Dt, and therefore, the volume fraction at the
next time step can be estimated as the one in the departure element
at the present time step:

Cnþ1
P ¼ FDE

SDE
ð29Þ

in which SDE and FDE are the entire volume and the phase volume in
the departure element. SDE can be calculated directly from the coor-
dinates of the virtual points. To achieve FDE, one need to get the
intersections of the departure element with element P as well as
all its neighboring elements, and then clip the intersections with
reconstructed linear phase boundary. Concretely, FDE is initialized
as 0, and element P and all its neighbors are organized as a list of
elements. To calculate FDE, one needs to loop over the element list,
and three possible situations are considered for the ith element:

(1) If C ¼ 0, no volume is added to FDE.
(2) If C ¼ 1, the intersection between departure element and the

ith element is calculated, and its area is added to FDE.
(3) If 0 < C < 1, the intersection between departure element and

the ith element is first calculated. Since 0 < C < 1 implies a
reconstructed interface inside the ith element, the intersec-
tion polygon is then clipped by the reconstructed interface.
The area of the finally obtained polygon is added to FDE.

Details of the algorithms for polygon clipping and intersection
between two polygons are described in Appendix B.

3.6. Solution algorithm

The numerical methods presented in this section were imple-
mented by an in-house CFD code, named as MHT, designed for
solving multi-region heat transfer and fluid flow. As a summary,
the numerical approaches for VOSET in arbitrary polygon grid are
carried out in a procedure listed below. The calculation starts from
given fields of volume fraction (C0), velocity(u0) and pressure (p0).

1. Calculate the corresponding level-set function from the existing
volume fraction with the procedures presented in Section 3.1.
Note, in this step, the processes of interface reconstruction
(see Section 3.2) and interface normal calculation (Section 3.3)
are carried out.

2. Calculate the smoothed Heaviside function (Eq. (5)) using the
level-set function.



Fig. 6. Incremental remapping approach employed for calculating volume fractions in the next time step.
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3. Calculate the fields of density and viscosity using the smoothed
Heaviside function (Eq. (4)).

4. Calculate the interface curvature (Eq. (18)) and surface tension
(Eq. (3)).

5. Solve the velocity and pressure fields using SIMPLE algorithm.
6. Update the volume fraction using the incremental remapping

approach (see Section 3.3).

4. Numerical examples

4.1. Validation of the interface tracking method

For the purpose of validating the proposed interface tracking
method, we carried out three classical test problems, namely trans-
lation test, Zalesak rotation test, and vortex-in-a-box test in a
0;1ð Þ � 0;1ð Þ computational domain. The problems and their exact
solutions are described as follows.

(1) Translation of a circle: A circle with radius of 0.15 is initially
given with its center locates at 0:25;0:25ð Þ. A fixed and uni-
form velocity field is specified as u;vð Þ ¼ 1;1ð Þ. During a per-
iod of 0.5, the circle is move downstream while keeping its
size and shape. The final obtained circle is supposed center-
ing at 0:75;0:75ð Þ.

(2) Zalesak problem[43]: A slotted disk with radius of 0.15 is ini-
tially located at 0:5;0:75ð Þ. The disk transports in a fixed
rotational velocity field provided as u;vð Þ ¼
�yþ 0:5; x� 0:5ð Þ. The slotted disk rotates counter-
clockwise around the center of the domain, After a period
of 2p when a full round of rotation is completed, the slotted
disk is supposed to return its original location exactly.

(3) Vortex-in-a-box problem: A circular interface with radius of
0.15 centering at 0:5;0:75ð Þ is initially given. It deforms
under a vortex flow field provided as:

u ¼ � sin 2pyð Þsin2 pxð Þ cos pt
T

� �
v ¼ sin 2pxð Þ sin2 pyð Þ cos pt

T

� �
(

ð30Þ

in which T is the whole time period. In the first half of the whole
period, the interface is stretched progressively, finally deforming
into a thin strip at t ¼ T=2. During the second half of the time
period, the interface gradually recovers to its original shape and
position. Finally, the interface at t ¼ T is supposed to return to its
original location.

As Fig. 7 shows, two different grid types, namely mixed grid and
hexagonal grid, are used for all the three problems. The mixed grid
can examine how well the proposed method captures the interface
as it moves from one grid-type zone to another. In the grid gener-
ation, the 1� 1 domain was divided into four blocks. Two of them
are filled with triangular elements and the other two by quadrilat-
eral elements. Hexagonal grids have been demonstrated to give
faster rate of convergence than triangular grids for incompressible
flow [31]. Better performance can be therefore expected in free
surface flow simulations if it also gives accurate result in interface
tracking. Different resolutions are used in grid generations for both
mixed and hexagonal grids.

The numerical errors of the interface tracking method were cal-
culated by an L1-normal of the volume fraction expressed as:

Error ¼
X
i

j Ci � Cexact
i j DVi ð31Þ

in which Ci is the finally obtained volume fraction at the ith ele-
ment, and Cexact

i refers to the volume fraction corresponding to exact
interface position.

Fig. 8 shows the final interface positions in the finest mixed and
hexagonal grids. Comparing with the exact interface position, we
can find that the deviation occurs mostly around the sharp corners.
However, the interfaces by different grid types are almost coinci-
dent, which indicates that the grid types influence little on the
results of the interface tracking.

Fig. 9 displays the interface positions of the vortex-in-a-box
problem at t ¼ T=2. Generally, the obtained interfaces keep contin-
uous except for a minor breakup found in the mixed grid. The bet-
ter performance of the hexagonal grid may lie in the fact that it has
greater number of elements than the finest mixed grid. The inter-
faces t ¼ T when an entire period is completed is displayed in
Fig. 10. We can see, under both grids, the interface almost returned
to its original position with the result from polygon being a bit
better.

Table 1 summarize the numerical errors calculated by Eq. (31)
under different resolutions in the mixed grid. We can see that
the numerical errors decrease with the grid size in all the three



Fig. 7. Computational grids used for interface-tracking test: (a) mixed grid; (b) hexagonal grid.

8 K. Ling et al. / International Journal of Heat and Mass Transfer 143 (2019) 118565
problems. The estimated rate of convergences are listed in the last
row of Table 1. The numerical errors as well as the estimated rate
of convergence in the hexagonal grid are summarized in Table 2.
The numerical tests in both grid types suggests that VOSET in
unstructured grids has a nearly 2nd order rate of convergence.
Fig. 9. Interfaces of vortex-in-a-box problem at t ¼ T=2 tracked in the finest mixed
and polygonal grids.
4.2. Rayleigh-Taylor instability

Rayleigh-Taylor instability problem has been studied by many
researchers as a benchmark problem for free surface flow solvers
[44,45,29]. As Fig. 11 illustrates, a rectangular domain is initially
occupied by two immiscible fluids with different densities, and
the heavy fluid is placed over the light one. Under the effect of
gravity, any small perturbation will make the heavy fluid penetrate
into the light one and distort the phase boundary. In the present
study, we followed the parameters reported by Zuzio and Esti-
valezes [44]. The sizes of the rectangular domain were specified
as Lx=1 m and Ly = 4 m; the properties of the heavy and the light
fluids are qh ¼ 1:225 kg/m3, ql ¼ 0:1694 kg/m3,
lh ¼ ll ¼ 0:00313 Pa s; the gravity acceleration is g ¼ 9:8 m/s2
Fig. 8. Final interfaces of Zalesak rotation tracked in the finest mixed and polygonal
grids.

Fig. 10. Final interface positions of vortex-in-a-box problem tracked in the finest
mixed and polygonal grids.



Table 1
Numerical error and rate of convergence for mixed grid.

Problem

Grid size Translation Zalesak rotation Vortex-in-a-box

2:5� 10�2 3:429� 10�4 8:597� 10�3 2:226� 10�2

1:25� 10�2 1:177� 10�4 2:27� 10�3 7:93� 10�3

6:25� 10�3 3:6� 10�5 8:57� 10�4 1:787� 10�3

Rate of convergence 1.63 1.66 1.82

heavy fluid

light fluid

Lx

L
g

x

y

y

Fig. 11. Schematic of Rayleigh-Taylor instability.
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and the surface tension coefficient is r ¼ 0 N/m. The initial inter-
face location is y ¼ 0:5Ly þ 0:05 cos 2px=Lxð Þ. We simulated the
fluid motion within 1.0 s. In order to test the adaptability of the
proposed method in different grid types, a 64�256 uniform quadri-
lateral mesh (named M1 in this section) and an unstructured mesh
(named M2 in this section) composed of 22428 triangular ele-
ments, were used for the computations.

Fig. 12 shows the evolution of the distribution of the two phase
obtained by M1 mesh (64 � 256, quadrilateral). It can be seen, the
heavy fluid penetrates into the light one under the effect of gravity.
The heavy phase grows into a mushroom shape progressively
(t ¼ 0 to 0.75 s). At t ¼ 0:9 s, two tiny blocks of the heavy phase
are separating from the front end and thin filaments are formed.
For the purpose of comparison, the phase boundaries at t ¼ 0:9 s
reported by Zuzio and Estivalezes [44], Haghshenas et al. [45],
and Cao et al. [29] were reprinted in Fig. 13. Also, the result by
the M2 (triangular) grid in the present study is included. It can
be seen that, the phase boundary obtained by the M2 grid confirms
closely with the one by M1, which indicates the adaptability to grid
types of the proposed methods in solving free surface flows. Mean-
while, our results show excellent agreements with those in
literatures.
Fig. 12. Results of Rayleigh-Taylor instability problem by 64 � 256 quadrilateral
grid.
4.3. Collapse of a liquid column

As a classical problem of liquid-gas multiphase flow, the col-
lapse of a liquid column has been studied for the validations of
many numerical methods for free surface flows [13,16,14,
29,26,46]. As Fig. 14 shows, a rectangular liquid column collapses
and spreads on a horizontal wall due to the effect of gravity. Martin
and Moyce [47] have reported a series of experimental results,
which record the heights and the locations of the liquid front under
various condition. In the present study, the width and the height of
the initial liquid column are both specified as a ¼ 0:05715 m
(2 1

4 inches), and a is considered as the characteristic length of this
problem.

The water properties are ql ¼ 1000 kg/m3 and ll ¼ 0:001 Pa s,
and the density and the viscosity of air are qg ¼ 1:25 kg/m3 and

lg ¼ 1:8� 10�5 Pa s. The surface tension coefficient is r ¼ 0:0755
N/m and the gravity acceleration g ¼ 9:8 m/s2. Slip condition are
given on all the boundaries.
Table 2
Numerical error and rate of convergence for polygonal grid.

Problem

Grid size Translation Zalesak rotation Vortex-in-a-box

2:71� 10�2 8:196� 10�4 1:213� 10�2 4:917� 10�2

1:35� 10�2 2:168� 10�4 3:203� 10�3 1:153� 10�2

5:05� 10�3 4:929� 10�5 8:151� 10�4 1:42� 10�3

Rate of convergence 1.66 1.59 2.11
The simulations were conducted in a 5a� 1:25a rectangular
domain discretised by unstructured triangular elements. A coarse
grid (element number = 5614) and a finer one (element num-
ber = 35568) were generated. A CFL number of 0.1 was used in
determining the time steps.

The water-air interfaces at some selected time instances
achieved in the two grid configurations are given in Fig. 15, which
clearly shows the process of collapse of the water column. The
water front reaches the right boundary at around t ¼ 0:23 s. After
that it collides with the right wall and flows back, finally trapping
an air bubble around the right wall. Comparing the results by the
two grid configurations, one can find little difference before the liq-
uid front reaching the right boundary (t < 0:23 s). Some discrep-
ancy appears as the interface experience large topology changes.
It can only found in the finer gird that smaller droplets are formed
due to the breakup of the liquid film as it collides with the right
and the top walls.

Fig. 16 displays the height of the liquid column (h) and the dis-
tance of the liquid front location to the left boundary (z) against the



Fig. 13. Phase boundary at t ¼ 0:9 s of Rayleigh-Taylor instability problem by: (a) Zuzio and Estivalezes [44]; (b) Haghshenas et al. [45]; (c) Cao et al. [29]; (d) M1 mesh at
present; (e) M2 mesh at present.

Fig. 14. Schematic of the collapse of a liquid column. Unstructured triangular grid was used for the domain discretization.
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time achieved in the finer gird. Following the definition by Martin
and Moyce [47], those variables are non-dimensionalized as

H ¼ h=a; Z ¼ z=a and s ¼ t g=að Þ1=2. The experimental data by Mar-
tin and Moyce [47] are included in Fig. 16 for the comparison. It
can be seen that the variations of liquid height as well as the liquid
front location with time obtained by the proposed numerical
methods confirm well with the experimental data reported by
Martin and Moyce [47].

4.4. Single bubble rising

Hysing et al. [48] described a benchmark problem considering a
single bubble rising. As Fig. 17(a) provides such a problem: in a
1� 2 domain there is a circular bubble with diameter 0.5 centering
at 0:5;0:5ð Þ and its surrounding phase with a larger density. No slip
wall conditions are specified on the top and the bottom bound-
aries, and slip conditions are imposed on the two vertical bound-
aries. Two cases with different combinations of fluid properties,
summarized in Table 3, were simulated. The results by codes
TP2D, FreeLIFE and MooNMD were reported by Hysing et al. [48].
Additionally, this problem has been studied by subsequent studiers
[30,26,27] for validating their proposed numerical approaches for
free surface flows.

In order to evaluate the adaptability of the proposed numerical
method to different grid types, we intentionally divided the entire
computational region into four sub-domains, namely Zone 1 �
Zone 4. Different grid types, including unstructured triangular
and quadrilateral grid, structured quadrilateral grid, were used
for the mesh generations in those sub-domains (see Fig. 17 (b)),
and the grid information are summarized in Table 4. A CFL number
of 0.1 was used.

Fig. 18 illustrates the process of bubble motion and deformation
for Case 1, where interfaces are plotted at equal time increments of
0.5. The bubble experience a process of deformation until t ¼ 2:0,
after which it rises with a fixed elliptical shape. Through a careful
comparison, we found that the final bubble shape and location at
t ¼ 3:0 is consistent with those reported by Hysing et al. [48].
Fig. 19 displays the computational grid and some contours of the
level-set function at a local region of the bubble at t ¼ 3:0 when
the simulation terminated. The bubble was passing through the
boundary between Zone 2 and Zone 3, which are respectively dis-
cretised by quadrilateral and triangular grids. One can see the
level-set function maintains a smoothed feature across the bound-
ary, showing the feasibility of the proposed numerical method.

The histories of bubble location and rising speed are quantita-
tively compared here with the benchmark solutions. Following
the definitions by Hysing et al. [48], the vertical component of
the bubble centroid, denoted by y, and its mean rising velocity,
denoted by vy, are calculated by:

y ¼
R
X y 1� Cð ÞdVR
X 1� Cð ÞdV ; vy ¼

R
X v 1� Cð ÞdVR
X 1� Cð ÞdV ð32Þ



Fig. 15. Evolution of the interface for collapse of a liquid column achieved in the two grid systems.
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Note, 1� Cð Þ in Eq. (32) refers to the volume fraction of Phase 2
in the present problem. Fig. 20 shows the locations of the bubble
center and the mean rise velocity with time, in which the results
by code MooNMD (reported by Hysing et al. [48]) are included
and plotted as empty circles. We chose to compare with code
MooNMD for its better performance in grid independence than
the other two (TP2D and FreeLIFE). It can be seen, the bubble cen-
troid and mean rise velocity show excellent agreement with those
by code MooNMD [48].

Fig. 21 depicts bubble shapes and locations for Case 2, where
larger ratios of density and viscosity are considered. Compared
with Case 1, the bubble experiences a larger extend of deformation.
It lies in the decreased surface tension coefficient. Our result shows
that thin filaments started to develop at around t ¼ 2:0. After their
breaking up, two satellite bubbles were formed. The main part of
the bubble finally developed into a dimpled shape. The final shape
and location are in good agreement with those reported by Hysing
et al. (See Fig. 24 in Ref. [48]) except for the break up of the thin
filaments. It probably lies in the face that code MoomMD cannot
handle topology change of the interface. In this regard, our result
confirms better with the one by TP2D which can handle break up
automatically. However, the thin filaments (or satellite bubbles)
are too small and hence they have little influence to the main bulk
of the bubble [30]. Fig. 22 illustrates how the bubble location and



Fig. 16. Quantitative variables with time for the collapse of liquid column: (a) liquid height; (b) distance of liquid front to the left boundary. All variables are dimensionless.

Fig. 17. Schematic of the single bubble rise problem: (a) computational domain and
initial bubble size and location; (b) grid types used in different sub-domains.
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its rising velocity vary with time for Case 2. In Fig. 22 the results by
code MooNMD reported by Hysing et al. [48] are also included. It
can be seen that our results confirm well with those by MooNMD.

The result displayed in this section suggests that the proposed
VOSET method which is embedded in the in-house code MHT
Table 3
Physical properties of the two test cases in bubble rising problem.

q1 q2 l1

Case 1 1000 100 10
Case 2 1000 1.0 10

Table 4
Grid types and numbers in the four sub-domains.

Zone 1 Zone

Grid type Triangle Quadra
Grid number 7506 7875
possesses strong ability for simulating free surface flow with large
density ratio and excellent adaptability to different grid types.
4.5. Flow focusing droplet generator

In order to illustrate the ability of the proposed numerical
method in simulating free surface flows in irregular domain, we
l2 g r

1.0 0.98 24.5
0.1 0.98 1.96

2 Zone 3 Zone 4

ngle Triangle Quadrangle
11132 1869

Fig. 18. The process of bubble rise and deformation for Case 1.



Fig. 19. Computational grid and some contours of level-set function at a local
region of 0:7;0:9ð Þ � 0:85;1:25ð Þ at t ¼ 3:0.
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carried out a calculation on the working process of a coaxial flow
focusing microfluidic droplet generator, which has many applica-
tions in chemistry and biology [49]. Fig. 23 illustrates the compu-
Fig. 20. The histories of (a) bubble volume cent

Fig. 21. The process of bubble rise
tational domain and the boundary conditions. The dispersed phase
(d-phase) flows out from a thinner tube coaxially placed inside a
larger channel with the continuous phase (c-phase) flowing
through. An orifice is designed downstream the d-phase nozzle.
Such flow focusing design can make the dispersed phase break
up into droplets which then flow out at a certain size and fre-
quency. The geometries of the d-phase tube, the orifice as well as
the distance between them are illustrated in Fig. 23. Unstructured
quadrilateral cells were used for the domain discretization, and
three different mesh resolutions were adopted, namely M1 with
4706 cells, M2 with 14418 cells and M3 with 30316 cells.

In this problem, the properties of the dispersed phase are spec-
ified as qd ¼ 1000 kg/m3 and ld ¼ 10�3 Pa s, and the density and
the viscosity for the continuous phase are qc ¼ 920 kg/m3 and

lg ¼ 86:4� 10�3 Pa s. The surface tension coefficient is
r ¼ 0:0263 N/m. An velocity of vd ¼ 0:006 m/s is given at the inlet
of the d-phase, and two velocity magnitudes of vc ¼ 0:012 m/s and
vc ¼ 0:03 m/s at the c-phase inlets are considered.

Fig. 24 compares the interface positions at t ¼ 0:3 s obtained in
the three grid resolutions (M1, M2, M3) for the case with
vc ¼ 0:012 m/s. It can be seen, the interface resulted in M2 is
almost coincident with the one by M3, and thus we used M2 for
the simulation of this problem.

Fig. 25 displays the interfaces at different instances for the first
case with vc ¼ 0:012 m/s specified at the c-phase inlets, which
shows a typical process of a droplet formation. The dispersed phase
ejected from the nozzle first deformed into a thin strip. Due to the
larger flow rate of the continuous phase, the shear effect on the
interface resulted in a drag force imposed on the tip of the d-
er and (b) mean rising velocity for Case 1.

and deformation for Case 2.



Fig. 22. The histories of (a) bubble volume center and (b) mean rising velocity for Case 2.

Fig. 23. Computational configurations for the flow focusing droplet generator.
Unstructured quadrilateral elements were used for the domain discretization.

Fig. 24. Interface positions obtained in the three meshes M1, M2 and M3 at t ¼ 0:3
s for the case with vc ¼ 0:012 m/s.
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phase strip. The drag force became greater as the d-phase strip
penetrated into the orifice, which finally overcame the surface ten-
sion and led to the break up of the dispersed phase. Fig. 26 gives
the interface evolution of the second case, where the c-phase inlet
velocity was raised up to vc ¼ 0:03 m/s. It can be seen that smaller
droplet size was formed as a result of the greater flow rate of the
continuous phase. It lies in the greater drag force imposed on the
d-phase tip. The effect by the c-phase flow rate to the droplet size
suggested by our simulations is consistent with the experiments
reported by Rahimi et al. [49].
5. Conclusions

For simulating free surface flows in irregular domains, the cou-
pled volume-of-fluid and level-set method (VOSET) was extended
to arbitrary 2D grid types. Some geometrical methods were devel-
oped to consider the required calculations in arbitrary convex
polygons. Newton iteration and incremental remapping approach
were individually applied for interface reconstruction and
propagation.

The proposed VOSET method was embedded in the in-house
code MHT and was assessed by various test problems. The results
of translation test, Zalesak rotation test and vortex-in-a-box test
suggest that, in mixed and hexagonal grids, the proposed approach
has a near second order accuracy in terms of interface tracking.
Numerical simulations were carried out for classical free surface
flows including Rayleigh-Taylor instability, collapse of a liquid col-
umn and bubble rising, and the obtained results confirm fairly well
with experimental data or benchmark solutions. The numerical
results also indicated the abilities of the proposed method in han-
dling large density ratio and its adaptability to different grid types.

Finally, the proposed VOSET method was applied in the simula-
tion of the working process of a flow focusing droplet generator,
and the result illustrated the effect by the flow rate of the contin-
uous phase in adjusting the size of the generated droplets. The pro-
posed VOSET method can be regarded as a promising approach for
simulating free surface flows occurring in more complex
geometries.
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Appendix A. How to mark elements around interface

The first step in level-set calculation is to mark the elements
within a certain distance from interfacial ones. This section
describes how we search the elements within a certain distance,
denoted by r, from a given interfacial element. In this element-



Fig. 25. Process of the droplet formation for the first case with vc ¼ 0:012 m/s.

Fig. 26. Process of the droplet formation for the first case with vc ¼ 0:03 m/s. Smaller droplets were generated at faster c-phase flow rate.
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searching algorithm, we used two element lists, namely nearby-
element list and front-element list described as follows.

	 Nearby-element list saves the Numbers of elements which have
been identified to be within the given distance from the interfa-
cial element center.
	 Front-element list saves the Numbers of elements who may have
new nearby elements as their immediate neighbors.

The algorithm starts from an empty nearby-element list and
keeps inserting new Numbers of elements by iterative searching
procedures. In each iteration, the following steps are carried out.



Fig. 27. Algorithm used for marking elements located within r from a given interfacial element.

Fig. 28. Geometrical techniques for polygon calculation.
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Step 1: For the elements saved in a existing front-element list,
collect their immediate neighbors to reach a new element list;

Step 2: From the new element list resulted in Step 1, delete the
elements which are already saved in the nearby-element list to
reach a corrected element list;

Step 3: From the corrected element list obtained in Step 2,
delete the elements which are beyond the given distance r from
the interfacial element center;

Step 4: The further corrected element list is inserted into the
nearby-element list and is saved as the front-element list for the next
iteration.

In the first iteration, the interfacial element itself is inserted
into the front-element list. The algorithm keeps proceeding the iter-
ations composed of Steps 1�4 until an empty front-element list is
reached. Finally, the elements in the achieved nearby-element list
are marked to be located within r from the given interfacial
element.

Fig. 27 gives an example of the presented algorithm. Element
neighborhoods are represented by black solid lines. In one itera-
tion, a set of new elements are inserted into the existing front-
element list.
Appendix B. Polygon calculations

The interface reconstruction in unstructured grid requires some
geometrical techniques for convex polygons. As Fig. 28 shows, we
considering an N-sided polygon described by a list of its vertices
(denoted by xi with i ¼ 1 � N) sequenced counter-clockwise. The
area of the polygon is calculates as:

A ¼ 1
2

XN
i¼1
k xi � xCð Þ � xiþ1 � xCð Þk ð33Þ

in which xC ¼ 1
N

PN
i¼1xi. Note, in Eq. (33), xiþ1 takes the value of x1 for

i ¼ N.
In Fig. 28, one can find any straight line will divide the 2D plane
into two sides, named positive side and negative side here. Given a
polygon and a straight line l Q ;nð Þ, the objective of polygon-
clipping calculation is to get the positive-side of the given polygon,
which we call result polygon. The calculation is composed of the
two steps described as follows.

Step 1: Loop over the vertices to see which side of the straight
line they are located in. The ith vertice is determined to be in the
positive side if:

rQ � xið Þ � n P 0; ð34Þ

otherwise it locates in the negative side. Note, a point located on the
straight line is regarded to be in the positive side.

Step 2: Create an empty vertice list, and insert vertices for the
result polygon. The constructed list should include the positive-
side vertices of the original polygon as well as the intersections
between its sides and the straight line. Simultaneously, those
points need to be sequenced in counter-clockwise order. To reach
this, the vertice list of the original polygon is again looped over
with following procedures conducted for each vertice. For vertice
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xi, it is inserted into the vertice list of the result polygon in case it
locates in the positive side of the straight line. Afterwards, the loca-
tion of the next vertice, namely xiþ1 is checked (Note, the next ver-
tice is x1 if i ¼ N). If xiþ1 is found to be in the different side with xi, it
implies an intersection between the straight line l Q ;nð Þ and line
segment xixiþ1. In this case, the intersection is calculated as:

xiþ1=2 ¼ xi þ rQ � xið Þ � n
xiþ1 � xið Þ � n xiþ1 � xið Þ; ð35Þ

and inserted into the vertice list of the result polygon.
The polygon-clipping algorithm described above can be

employed to construct the algorithm calculating the intersection
between two convex polygons P1 and P2. One can loop over the
sides of P2, and clip P1 by a straight line passing through each
of those sides one after another. The finally obtained result polygon
is the intersection between P1 and P2.
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