

Numerical Heat Transfer

Chapter 13 Application examples of fluent for basic flow and heat transfer problem

Instructor Wen-Quan Tao; Qinlong Ren; Li Chen

CFD-NHT-EHT Center Key Laboratory of Thermo-Fluid Science & Engineering Xi'an Jiaotong University Xi'an, 2019-Dec.-17

数值传热学

第 13 章 求解流动换热问题的Fluent软件基础应用举例

主讲 陶文铨 辅讲 任秦龙,陈 教 西安交通大学能源与动力工程学院 热流科学与工程教育部重点实验室 2019年12月17日, 西安

Chapter 13 Application examples of fluent for basic flow and heat transfer problem

13.1 Heat transfer with source term

13.2 Unsteady cooling process of a steel ball

13.3 Lid-driven flow and heat transfer

13.4 Flow and heat transfer in a micro-channel

13.5 Flow and heat transfer in chip cooling

13.6 Phase change material melting with fins

- 第 13 章 求解流动换热问题的Fluent软件应用举例
- 13.1 有内热源的导热问题
- 13.2 非稳态圆球冷却问题
- 13.3 顶盖驱动流动换热问题
- 13.4 微通道内流动换热问题
- 13.5 芯片冷却流动换热问题
- 13.6 肋片强化相变材料融化

混合对流问题

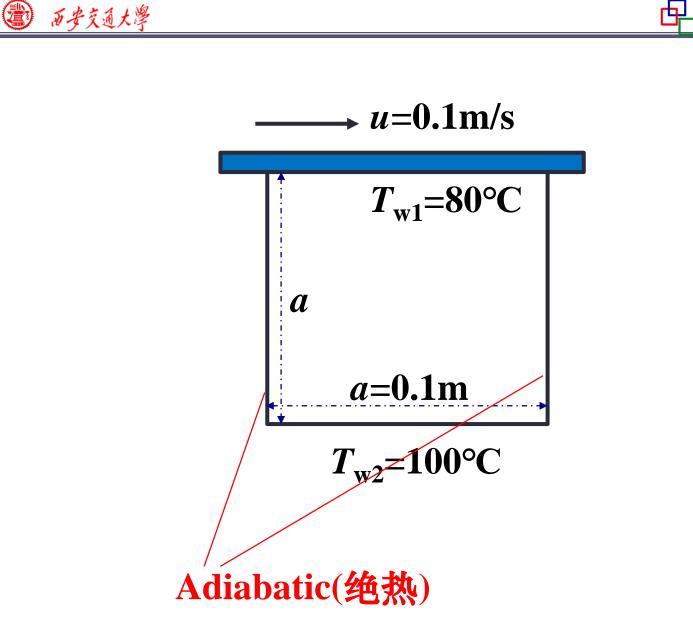
相变传热

微通道问题

13.3 Lid-driven flow and heat transfer

顶盖驱动流动换热问题

Focus: compared with previous examples, the focus of this example is that fluid flow is further considered and moving wall boundary condition is adopted.



13.3 Lid-driven flow

Known:

An infinite long solid plate with uniform temperature $T_{w1} = 80^{\circ}$ C is moving at the top of a square cavity with velocity *u*=0.1m/s. The left and right walls of the cavity are adiabatic (绝热), while the temperature of bottom wall is fixed at $T_{w2} =$ **100°C.** The effect of gravity is neglected.

Fig.1 Computational domain

CFD-NHT-EHT CENTER

Find: Velocity and temperature distribution

Solution:

Continuity:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Momentum:

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial x} + v\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)$$
$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial y} + v\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right)$$

$$\frac{\partial(\rho C_p u T)}{\partial x} + \frac{\partial(\rho C_p v T)}{\partial y} = \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$$

We should estimate Re to determine laminar or turbulent state.

Know:

 $u_{max} = 0.1 \text{m/s}$, l = 0.1 m, $v = 1.46 \text{E} - 6 \text{m}^2 \text{s}$ ul

$$Re = \frac{m}{v} = 684$$

Laminar flow

Remark: in this problem, we just take into account the forced convection. Natural convection is neglected. You can further study the effects of natural convection!

Start the Fluent software

Fluent Launcher	– 🗆 X
ANSYS	Fluent Launcher
Dimension 2D 3D	Options Double Precision Processing Options
Display Options Display Mesh After Reading Embed Graphics Windows Workbench Color Scheme	 Serial Parallel
Show More Options	
<u>D</u> efault	<u>C</u> ancel <u>H</u> elp ▼

- 2. Choose display options
- **3.** Choose Serial

processing option

Note: Double precision or Single precision

For most cases the single precision version of Fluent is

sufficient. For heat transfer problem, if the thermal

conductivity between different components is high, **Double precision version is better.**

1) 西安交通大學

CFD-NHT-EHT

1st step: Read and check the mesh

- The mesh is generated by pre-processing software such as ICEM and GAMBIT. The document is with suffix (后级名).
- This step is similar to the Grid subroutine (UGRID,
 Setup1) in our general code.


```
> Reading "E:\fluent-case\flow-5\flow2.cas".
Done.
    9801 guadrilateral cells, zone 8, binary.
   19404 2D interior faces, zone 9, binary.
      99 2D wall faces, zone 10, binary.
      99 2D wall faces, zone 11, binary.
     198 2D wall faces, zone 12, binary.
   10000 nodes, binary.
   10000 node flags, binary.
Building...
     mesh
     materials,
     interface,
     domains,
        mixture
     zones,
        fixed-wall
        bottom-wall
        move-wall
        int solid
        fluid
Done.
```


1st step: Read and check the mesh

Mesh→Check/Report quality

Check the quality and topological information of the mesh

```
Domain Extents:
    x-coordinate: min (m) = 0.000000e+00, max (m) = 1.000000e-01
    y-coordinate: min (m) = 0.000000e+00, max (m) = 1.000000e-01
    Volume statistics:
        minimum volume (m3): 1.020304e-06
        maximum volume (m3): 1.020304e-06
        total volume (m3): 1.000000e-02
Face area statistics:
        minimum face area (m2): 1.010101e-03
        maximum face area (m2): 1.010101e-03
        Checking mesh......
Done.
```

```
Mesh Quality:
Orthogonal Quality ranges from 0 to 1, where values close to 0 correspond to low quality.
Minimum Orthogonal Quality = 1.00000e+00
Maximum Aspect Ratio = 1.41422e+00
```

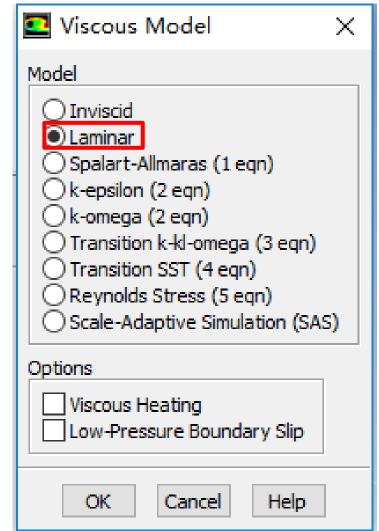

2st step: Scale the domain size

General→**Scale**

General	Scale Mesh	×
Solver	Domain Extents Xmin (m) 0 Xmax (m) 0.1 Ymin (m) 0 Ymax (m) 0.1	Scaling Convert Units Specify Scaling Factors Mesh Was Created In <select></select>
TypeVelocity FormulationImage: Pressure-BasedImage: AbsoluteImage: Density-BasedImage: Relative	View Length Unit In m ~	Scaling Factors
Time 2D Space Steady Planar Transient Axisymmetric Axisymmetric Swirl		Scale Unscale
Gravity Units	Close Help	

Fluent stores the mesh in units as "m", SI unit. You can show it in different units such as cm, mm, in, or ft.
This time ,we don't need to scale the mesh.

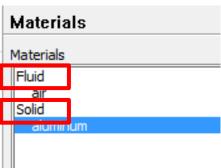
You also can scale the domain size use "Convert Units" or "Specify Scaling Factors" command. **Remark:** Fluent thought you create the mesh in units of m. However, if your mesh is created in a different unit, such as cm, you must use Convert Units Command to change the mesh into the right size. The values will be multiplied by the Scaling Factor.


Scale Mesh	x	E Coole Meeh	X
Domain Extents Xmin (m) -0.014 Ymin (m) -0.05 Ymax (m) 0.05 View Length Unit In •	Scaling Convert Units Specify Scaling Factors Mesh Was Created In Cm Scaling Factors X 0.01 Y 0.01 Scale Unscale	Domain Extents Xmin (m) -0.00014 Ymin (m) -0.0005 Ymax (m) 0.0005	Scaling Convert Units Specify Scaling Factors Mesh Was Created In Cm Scaling Factors X 0.01 Y 0.01 Scale Unscale
Close Help		Close Help	2

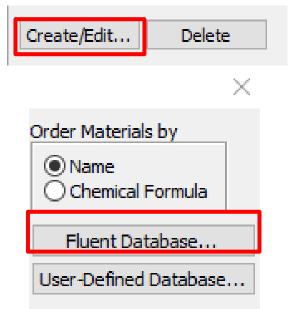
Step 3: Choose the physicochemical model

Based on the governing equations you are going to solve, select the related model in Fluent.

💶 Energy	\times
Energy	_
Energy Equation	
OK Cancel	Help



CFD-NHT-EHT


Step 4: Define the materials

Meshing	Ma
Mesh Generation	Mat
Solution Setup	Flu
General Models	So
Materials Phases Cell Zone Conditions Boundary Conditions	

Click "Fluid" or "Solid"

or select the "create/edit"

Fluent provide a lot of materials in its database. Usually, You can find the material you need in the database.

However, it will happen that the material you need is not in the database. You can input it manually.

5st step: Define the cell-zone condition

Cell Zone Conditions	
Zone	Type fluid
	Fluid Zone Name Inner
Phase Type D mixture Third a	Material Name air Edit Frame Motion Source Terms Mesh Motion Fixed Values
Edit Copy Profiles Parameters Operating Conditions Display Mesh	Porous Zone Reference Frame Mesh Motion Porous Zone Embedded LES Reaction This page is not applicable under current settings.

CFD-NHT-EHT

6st step: Define the Boundary conditions

Boundary Conditions

Zone		
bottom-wall		
fixed-wall		
int_solid		
move-wall		
Phase	Type	ID

 mixture
 interior
 9

 Edit...
 Copy...
 Profiles...

 Parameters...
 Operating Conditions...

 Display Mesh...
 Periodic Conditions...

The bottom wall is not moving and its temperature is 100°C. The left and right wall is adiabatic.

Alltheseboundaryconditionsareeasy to set inFluent.

The top wall is moving. We will discuss it in detail.

"Moving wall" is used to include tangential (切向) motion of the wall. This function cannot be used to include the normal (法向) motion of a wall.

💶 Wall		
Zone Name		
move-wall		
Adjacent Cell Zone		
solid		
Momentum Thermal	Radiation Species DPM Multipha	ase UDS Wall Film
Wall Motion	Motion	
◯ Stationary Wall ● Moving Wall	Relative to Adjacent Cell Zone Absolute	Speed (m/s)
	 Translational Rotational Components 	Direction X 1 P Y 0 P
Shear Condition		
No Slip Specified Shear Specularity Coeffici Marangoni Stress	ent	
Wall Roughness		
Roughness Height (m)	-	

7st step: Define the solution

For algorithm and schemes, keep it as default. For more details of this step, one can refer to Example 1 of Chapter 13.

Solution Methods		
Pressure-Velocity Coupling		
Scheme		
SIMPLE	-	
Spatial Discretization		
Gradient		
Least Squares Cell Based	•	
Pressure		
Second Order		
Momentum		
Second Order Upwind		
Energy		
Second Order Upwind		
		-
Transient Formulation		
	-	
Non-Iterative Time Advancement		
Frozen Flux Formulation		

Algorithm: simple

- **Gradient:** Least Square Cell Based
- **Pressure:** second order
- **Momentum:** second order upwind

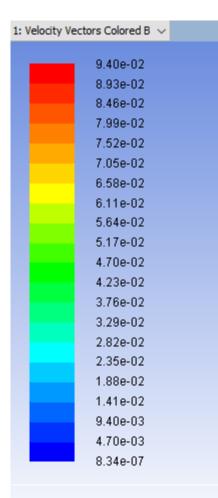
Energy: second order Upwind

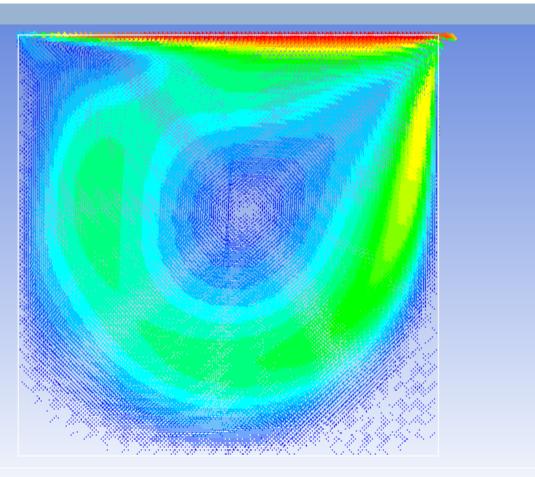
7st step: Define the solution

For under-relaxation factor, keep it default. For more details, refer to Example 1.

8st step: Initialization

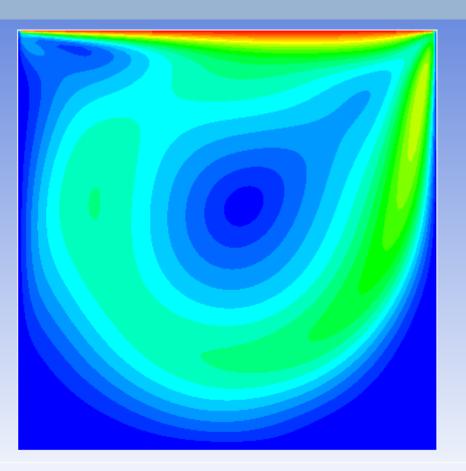
Use the standard initialization, for more details of Hybrid initialization, refer to Example 1.


Step 9: Run the simulation


Step 10: Post-processing results

Velocity Vector

ANSY:



Velocity magnitude

1: Contours of Velocity Magn $\, \sim \,$

_	1.00e-01	
_	9.50e-02	
_	9.00e-02	
	8.50e-02	
	8.00e-02	
	7.50e-02	
	7.00e-02	
	6.50e-02	
	6.00e-02	
	5.50e-02	
	5.00e-02	
	4.50e-02	
	4.00e-02	
	3.50e-02	
	3.00e-02	
	2.50e-02	
	2.00e-02	
	1.50e-02	
	1.00e-02	
	5.00e-03	
	0.00e+00	

Contours of Velocity Magnitude (m/s)

ANSYS Flue

Temperature

tours of Static Temper 🗸	
3.73e+02	
3.72e+02	
3.71e+02	
3.70e+02	
3.69e+02	
3.68e+02	
3.67e+02	
3.66e+02	
3.65e+02	
3.64e+02	
3.63e+02	
3.62e+02	
3.61e+02	
3.60e+02	
3.59e+02	
3.58e+02	
3.57e+02	
3.56e+02	
3.55e+02	
3.54e+02	
3.53e+02	

Contours of Static Temperature (k)