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11.1 Treatments of Irregular Domain in FDM,FVM
11.2 Introduction to Body-Fitted Coordinates

11.3 Algebraic Methods for Generating Body-Fitted
Coordinates

11.4 PDE Method for Generating Body-Fitted
Coordinates

11.5 Control of Grid Distribution

11.6 Transformation and Discretization of
Governing Eg. and Boundary Conditions

11.7 SIMPLE Algorithm in Computational Plane

11.8 Post-Process and Examples
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11.1 Treatments of Irregular Domain in FDM,FVM

11.1.1 Conventional orthogonal coordinates can
not deal with variety of complicated geometries

11.1.2 Methods in FDM,FVM to deal with
complicated geometries

1. Structured grid (Z5 ¥4 F#%)

1) Domain extension method

2) Speclal orthogonal coordinates

3) Composite grid (ZHE M%)

4) Body-fitted coordinate GERALf7 )
2. Unstructured grid (JE45#44k)
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[ 11.1 Treatments of Irregular Domain in FDM,FVM ]

11.1.1 Conventional orthogonal (IE%Z)coordinates
can not deal with variety of complicated geometries

s \ P Q

T &

(a) (b) (c) (d)

Plane Eccentric Solar Tube
nozzle annulus collector bank
(1t Lo 15 25)
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11.1.2 Methods in FDM,FVM to deal with
complicated geometries

1. Structured grid (Z5 K4k M%)

1) Domain extension method (X 15#" 7535)

An irregular domain is
extended to a regular one, 4@\/)
the irregular boundary is ))

replaced by a step-wise z PREX

approximation, and C P
simulation is performed in ) =
a conventional coordinate : F

within the extended one.
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Extended
E | region

A
(1) Flow field simulation

(a) Set zero velocity at the boundaries of extended region
at B-C-D-E: u=v=0;
(b) Set a very large viscosity in the extended region
n =10 ~10%;
(c) Set interface diffusivity by harmonic mean

(2) Temperature field prediction

SEoT-EnT 6/92
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(a) First kind boundary condition with uniform
temperature: The same as for velocity: in the
extended region the thermal conductivity Is set to e
very large, 4 =10% ~10%* and boundary temperatures
are given;

(b) Second kind boundary conditions by ASTM

Specified boundary heat flux distribution (not necessary

uniform) extended
For CV. P adding additional region
source term: . qeef

cad AVP

And setting zero conductivity
for the extended region to
(51 gemawren avoid heat transfers outward.  True boundary 7/92
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(c) Third kind boundary conditions by ASTM

Specified external convective heat transfer coefficient
and temperature, h and T,

For CV. P following source

term IS added o ’
ef T,

a8 = AV 1h+ ol 4
P
ef 1
AV, 1h+814
And setting zero conductivity (A =0) for the extended
region to avoid heat transfers outward.

For not very complicated geometries, Is IS a
convenient method.

___2) Special orthogonal (IEAZ ) coordinates

HLAF

P.ad
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There are 14 orthogonal coordinates, and they can
be used to deal with some Irregular regions

Elliptical coordinate can be Bi-polar coordinate (XA}
used to simulate flow in elliptic AsF1) can be used for flow
tube in a biased annulus({k.Cr 1)

3) Composite coordinate (255 24 #75)(block structured)

The entire domain is composed of several blocks, for
each block individual coordinate Is adopted and solutions
are exchanged at the interfaces between different blocks.

Mathematically it is called domain decomposition method

— vy S

CENTER 9/ 92
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Grid lines are ; -
continuous. The - ; Eﬁiﬁ%@ jJé\,_/ m Jé\j/
entire domain Grid lines are o R
can be solved by  discontinuous Application example
ADI.

Aa). JRiR

g ; (b) it
Original design Improved design
CFD-NHT-EHT
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4) Body-fitted coordinates (& {£24 #7)

In such coordinates the coordinates are fitted with(i&
) the domain boundaries; The generation of such
coordinates by numerical methods is the major concern of
this chapter. It was proposed by TTM in Colorado Uni.

2. Unstructured grid (FESEFI4LRHS)

There are no fixed rules for the
relationship between different
nodes, and such relationship should
be specially stored for each node.
Computationally very expensive.
Suitable for very complicated
geometries.

SEoT-EnT 11/92
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11.2 Introduction to Body-Fitted Coordinates

11.2.1 Basic idea for solving physical problems by
BFC

11.2.2 Why domain can be simplified by BFC
11.2.3 Methods for generation of BFC

11.2.4 Requirements for grid system constructed
by BFC

11.2.5 Basic solution procedure by BFC

SEoT-EnT 12/92


/
/

A FE S AR (/ :\,\\
S—yr~"

TRBY) FEZAA
FZAAR KA NS TT )

XIAN JIAOTONG UNIVERSITY

[ 11.2 Introduction to Body-Fitted Coordinates ]

11.2.1 Basic idea for solving physical problems by
BFC

1.In the numerical simulation of physical problems the most
Ideal coordinate Is the one which fits with the boundaries of
the studied problem, called body-fitted coordinates(i& {444
¥~ & ): Cartesian coordinate is the body-fitted one for
rectangles, polar coordinate is the one for annular spaces.

2.The existing orthogonal coordinates can not deal with
variety of complicated geometries in different fields ; Thus
artificially constructed body-fitted coordinates are
necessary to meet the different practical requirements.

SEoT-EnT 13/92
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11.2.2 Why domain can be simplified by BFC

1.Assuming that a BFC has been constructed in Cartesian
coordinate x-y, denoted by &—7 ;

2.Regarding & and 7 as the two coordinates of a Cartesian
coordinate in a imaginery computational plane, then the
Irregular geometry in physical plane transforms to a
rectangle in the computational plane.

A B
physical plane computational plane 7

SEoT-EnT 14/92
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3.The grids in computational plane are always uniformly
distributed, thus once grid number Is given, the grid system
In computational plane can be constructed with ease.

4.Simulation is first conducted in )
the computational plane , then the
converged solution is transferred
from the computational plane to
physical plane.

In such a way the simulation ¢
domain is greatly simplified.

5.1n order to transfer solutions 1

- . A 3 B
from computational domain to e
physical domain, it is necessary

SEoT-EmT 15/92
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to obtain the corresponding relations of nodes between the
two planes.

The so-called grid generation technique herafter refers
to the methods by which from (£, 77) in the

computational plane the corresponding (X, y) In the
physical Cartesian coordinate can be obtained.

11.2.3 Methods for generation of BFC

1. Conforming mapping (£f 25 #v%)
2. Algebraic method (fR&%)

The correspondent relations between grids of two
planes are represented by algebraic equations.

3. PDE method(f#4) /5 F215)

CFD-NHT-EHT
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The relations are obtained through solving a PDE.
Three kinds of PDE, hyperbolic, parabolic and elliptic, all
can be used to provide such relations.

11.2.4 Requirements for grid system constructed
by BFC

1. The nodes In two planes should be one to one
correspondent (——X%f B ) .

2. Grid lines In physical plane should be normal to the
boundary .

3. The grid spacing in the physical plane can be
controlled easily.

SEoT-EnT 17/92
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11.2.5 Procedure of solving problem by BFC

1. Generating grid: find the one to one correspondence

between (&£,n)«—(X,y)

2. Transforming governing egs. and boundary conditions
from physical plane to computational plane;

3. Discretizing gov. ed. and solving the ABEQs. In
computational plane.

4. Transferring solutions from the computational plane
to the physical plane.

CFD-NHT-EHT
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11.3 Algebraic Methods for Generating Body-Fitted
Coordinates

11.3.1 Boundary normalization Gl ALH#iE40)

1. 2-D nozzle

2. Trapezoid enclosure (BT f 4 25 %)

i)

p=i

3. Eccentric annular space (ffg.C»

4. Plane duct with one irregular boundary

11.3.2 Two-boundary method (AUl 3

SEoT-EnT 19/92
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11.3 Algebraic Methods for Generating Body-Fitted

Coordinates
\_ Y,

11.3.1 Boundary normalization (25 #E7Eil)

1. 2-D nozzle
A plane nozzle is given by following profile

\77 =y/ ymax\
NormalizZation

| Ymax = X i 2 ¢
cENTER T 20/92
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2. Trapezoid (#:7E) enclosure
Functions of two tilted boundaries are given by:

F(x), F,(x)
The grid in the trapezoid enclosure is generated.

s & =ax| 7
N T —
[~

\% U:b y— Fl(X)
TIE F.(0-F0)| o -

-—: hormalization

Normalized by the distance

between top and bottom
Solar collector

SEoT-EnT 21/92
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3. Eccentric annular space

Given two radiuses ( R,a) and the eccentric distance

c=¢ y
—— |
.
n= I'—a o) 2% €
R(p)—a

normalization
Normalized by the distance between outer and inner circles.

Prusa,Yao, ASME JH T, 1983, 105:105-116
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4. Plane duct with one irregular boundary
X Given the profile of the irregular boundary o(y)

E=x] ¢

Z

7

'4 —

/ —

7

50 y

Z Y 7] =

( 5(x)

é normafization

Z Normalized by the

Z _distance between left () 1
} and right boundaries 1]

Sparrow-Faghri-Asako, p.479 of Textbook

CFD-NHT-EHT
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11.3.2 Two-boundary method

1. Method for transforming an irregular quadrilateral ( PU:ii
f£) in physical plane to a rectangle in computational plane.

Implementing procedure:
1) Setting values of 77 for two opposite (AH X )
boundaries:

Say': n)ab =1, :O, 77)cd =7} =1
2) Setting the rules of how X,y vary
with & on the two boundaries:

Xy = Xb(f)’ Yo = Yb(f)
X =X(5), Y, = ¥ (&)

SEoT-EnT 24/92
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3) For any pair of (x,y) and (&,7) within the domain
taking following interpolations

X(S,77) = %, (5, 0) [1 = 1,(n) [+ 1,(7) % (S, 1)
y(e: 1) = ¥, (c, Q)1 1,(m)]+ 1,(m) (5. ])
where f, (r7) must satisfy following two conditions:
1=0,X(S,77) = %,(S), Y(S:77) = ¥, (&)
n=1x(5,1)=x(5),y(5.n) = y.(S)

The most simple interpolation which satisfies such
conditions IS

i(n)=n

SEoT-EnT 25/92
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2. Example of two-boundary method
X(E,n)=x,e(l-n)+X on
y(&n) =Y, o(d—m)+ Yy, o7
‘Xb =&, Y,=0;x, =&, , =1+§‘I’

—
—

(0,1)_ .t ‘Xzf‘(l—ﬂ)-l-f‘??:f‘ ‘X:ﬂ 0
Z/b Jy:Oo(l—n)+(1+§)077‘ \y=77(1+§)\

(0,0) (1,0) < _
- o =X The same as that
n=0 Thatis. = Y | by boundary

1+ x| normalization method.

77=11

|

CEnTER 26/92
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11.4 PDE Method for Generating Body-Fitted
Coordinates

11.4.1 Known conditions and task of grid
generation by PDE

11.4.2 Problem set up of grid generation by PDE
1. Starting from physical plane

2. Starting from computational plane

11.4.3 Procedure of grid generation by solving an
Elliptic-PDE

11.4.4 The metric identity should be satisfied

SEoT-EnT 27/92
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[11.4 PDE Method for Generating Body-Fitted Coordinates ]

11.4.1 Known conditions and task of grid
generation by PDE

1. The grid distribution in computational plane is given;
2. The grid arrangement on the physical boundary is given.
Find: the one to one correspondence between (x,y),(&,n)

e (x,y) <> (S,7)

11.4.2 Problem set up of grid generation by PDE
(RT3 75 R A2 B B i) A ) 39D

1. Starting from physical plane

SEoT-EnT 28/92
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Regarding (&£,7) as two dependent variables to be
solved in the physical plane; then above given conditions are
equivalent to: Given boundary values of the two dependent
variables:

op = fg(XB’yB)’nB = T"(Xg, Yg)

Find values of (&,7)for any inner point (X, Y) within the
solution region in physical plane.

This is a boundary value problem (G4E Ja]f3) in
physical plane. The most simple governing equation Is
Laplace eq.:

V2E=0; V’p=0 or &xt6,, =0, 1, +1,, =0
&, ng given (ie., &,n of boundary nodes are known)

SEoT-EnT 29/92
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However, this problem should be solved for a
domain in physical plane, which is irregular! Thus we
have the same difficulty as for the original problem!

2. Starting from computational plane

Now we regard (X, Y) as the dependent variables in
computational domain, the above conditions are
equivalent to solve a boundary value problem in
computational domain: with given boundary values of x
and y:

Xg = £7(&a.16), ¥s = 7 (&5.75)

it is required to find (X, Yy) for any inner point (&,n)
In the computational plane.

SEoT-EnT 30/92
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This 1s a boundary value problem in a regular
computational domain. This treatment greatly simplify
the problem because in computational plane the solution
region is either a rectangle or a square.

It should be noted that the boundary value problem
In computational domain can not be simply expressed
as:
Xéé U X7777 =0; y§§ v y7777 =0
According to mathematical rules the correspondent
expressions are:

05X§§—2,3X§,7+7/X,7,7 =0; ayéé_zﬂyﬁn_l_yynn =0

et 31/92
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where subscript stands for derivative and parameter [
represents the orthogonality (IEAZ %) of grid lines in
physical plane: its value of two orthogonal lines is

Zero .

The above two equations are non-orthogonal and non-
Isotropic diffusion equations.

Thus the essence (4~ Jix) of grid generation by PDE
IS to solve two boundary value diffusion problems in

computational domain! The boundary value problems
are set up by elliptic partial differential equations.

CFD-NHT-EHT
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11.4.3 Procedure of grid generation by solving an
elliptic-PDE

1. Determining the number of nodes in physical plane and
constructing grid network in computational plane;

2. Setting boundary nodes in physical plane according to
given conditions;

3. Solving two boundary value problems in computational
plane, by regarding them as non-isotropic and nonlinear
diffusion problems with source term.

4. Calculating X:,X,,Y:, Y, after getting the
correspondence between (&,77) and (X,Y) .

SEoT-EnT 33/92
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11.4.4 The metric identity should be satisfied

In the transformation of govern. eq. from physical
plane to computational plane such kind of derivatives will
be introduced.

19 op ,0 0@ ,0
0D L) gt =103, ) ~ (9.,

where: J =Xy, —X Y. , called Jakobi factor.

When ¢ is uniform ‘jf 0, thus: (9Y,): =(4Y:),
X

That Is for uniform field: |Y,. =Y.,

SEoT-EnT 34192
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This equation is called metric identity(FEF{EZER). In
the procedure of grid generation this identity should be
satisfied. Otherwise artificial source will be introduced.

In order to guarantee the satisfaction of metric identity

Thompson et al. (TTM) proposed following conditions:
(1) All derivatives with respect to geometric position

must be determined by discretized form;
(2) Any such kind of derivative must be computed
directly, no interpolation can be used.

Example

[Find] Y, Y, forthe position of
X=1.75, y=2.2969 in the 2D nozzle
problem.

CFD-NHT-EHT
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[Calculation] (1) The position of this point (&£,77) in
computational plane is determined:

E=x=175n=yly,  =22969/1.75"=0.75

(2) According y :ﬂ) _Y@.n+An)-y(&in—An) _
to definition: 7 o5 <" 2A7

y[1.75,(0.75+0.25)] - y[1.75,(0.75—0.25)]
2x%0.25

_ 2
y(1.75,1.0)— y(1.75,05) _Y =7

0.5 & =X
1x1.75° —0.5%1.75°
0.5

et 36/92

=3.0625


/
/

R)) FFAAA HoRAtFE 5 A2 '

Loy YERAGT) -Y(E-A)
g af 17=Ccons 2A§ |
y[(1.75+0.25),0.75] - y[(1.75—-0.25),0.75] =z
2x0.25 = = ~
_ y = 77X2
_ ¥(2.0,0.75) - y(1.5,0.75)
0.5 —
E=X
2 2
- 2oXET 0TS 56250
0.5
y, =3.0625; y,. =2.6250
CEnTER 37/92
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11.5 Control of Grid Distribution

11.5.1 Major features of grid system
generated by Laplace equation

11.5.2 Grid system generated by Poisson
eguation

11.5.3 Thomas-Middlecoff method for
determining P,Q function

SEoT-EnT 38/92
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[ 11.5 Control of Grid Distribution

J

11.5.1 Major features of grid system generated

by Laplace

eguation

1.The grid distribution along the boundary in physical

plane is automatically unified within the solution

domain

g :
Strongly non-uniform

distribution at left
\boundary

/In the domain grid
distribution has been
unified.

CFD-NHT-EHT
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2.Along the normal to a curved wall spacing between grid
lines changes automatically.

3
Such features are inherently ( N
related to diffusion process: For steady TTE « g%
O

heat conduction through a cylindrical

wall heat flux gradually deceases along
radius and spacing between two A
isothermals increases. a7

Thus it is needed to develop \

techniques for controlling grid distribution: grid density

woameenrdnd the orthogonality of gridline with boundary. 10/92
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11.5.2 Grid generation by Poisson equation

1.Heat transfer theory shows that high heat flux leads to
dense isothermal (Z8JE%2%) distribution. If gridlines are
regarded as Isothermals, then their density can be
controlled by heat source. Heat conduction with source

term Is governed by Poisson equation.

In physical plane Poisson equation is:
VEE=P(&n); Vin=Q(& 1)

In computational plane, it becomes:

ax.. —20%., +yx, ==I[P(& n)x. +Q(&,n)x ]

aYe: =2y, +7Y,, =3[P0y +Q(& m)Y,]

w2 2. _ - =X+
a=X,+Yy,; B=XX 4V, V=XtV 41/92
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11.5.3 Thomas-Middlecoff method for P,Q

P,Q are source function for controlling density and
orthogonality, and can be constructed by different
methods. Thomas— Middlecoff method Is very
meaningful and easy to be implemented. Its
Implementation procedure is introduced as follows .

1.Assuming that
P(E,m) = (&) (& +E,):Q(Em) =w (&, n)(n; +1;)

[
/Controlling he Controlling grid density within

orthogonality of _ " _
boundary grid line gensityonitie boundanyioiinner

IZ:FIII-I'iIHT-EHTK / Qeg i On

CENTER

domain---transmitting the specified
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/
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. Q Computational plane

-

1

A

_ s
o0& = on = const

ooy 95y 05
S5 <50

Along the £ coordinate:

The first derivatives of <*77 with respect to X, y ,
S, 1y , in the physical plane reflect the rate of changes.
Thus (& +&;) represents grid density distribution!

After grid generation, ¢,,¢,,7,,77, are known along
the boundary; The key is to determine @,y .

SEoT-EnT 43/92
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2. Ways for determining ¢ and ¥

1) ¢ Is first determined for the bottom and top
boundaries where 1 Is constant; ¥/ is first determined
for the left and right boundaries where ¢ is constant.

The boundary values of ¢ and  should satisfy
following conditions: the local gridlines are straight and

normal to the relative boundary (J&538 P42k & H 2%
HEEDH).

2) On the constant & lines between bottom and top,
the values of ¢ are linearly interpolated with respect
to 77 ; Onthe constant 77 lines between left and right

boundaries the values of 1/ are interpolated linearly
with respect to &

‘/ @ “.“
N r

44/92
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On the constant £ A
Iine¢ IS linearly
Interpolated with
respect to 77 )

=,

determining
\ﬁ&
/

= C, *
{degrmining¢ }

Then our task is to determine ¢ for =0 and =1
and determine ¥ for £=0and £ =1

Locally straight and
orthogonal to the
boundary )

et 45/92


/
/

ke g s (&)
3. Way for determining @ on 7=0,77=1
1) Substituting
P(E,m) =d(En)(&E +E.):QEn) =w (& n)(n; +n;)

Into the Poisson equation in computational plane

ay..—2BY., +ry,, == [PE&mny. +QE&.n)y,]

Rewriting above equations in terms of ¢ W,
obtaining following two simultaneous equations:

a(y.: +9y.)—2BY., +r(y,, +vy,)=0
(X, + X)) 28X, +y(x, +tyy,)=0

SEoT-EnT 46/92
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2) Eliminating ¥ from above two equations, obtaining
equation of ¢

a[yﬂ(xcf +¢X§)_Xn(y§§ +¢y§)]:
ys[z (X77 / yn)f +7/(X7777y77 o y7777X77)/ ys]

‘Straight and normal ‘ \
=0, 1Y,),

. R
Locally straight and

normal(EERFE E IE

et 47/92



/
/

ol FEEBAS #‘:b-’uﬁ‘}‘%{' —‘%I- #E //4\'\\‘
FIAELE e )

On the local straight line, we have:

dy dx dx/dn
- — t =—»— = CONSt =——> =(x_./y ) =const
= cons &y d dy/dré (x,1Y,)
Thus  (x / =—(x /y )=—(const)=0
(x,1Y,), OI77( 1Y) OI77( )

3) Summarizing: Local orthogonality leadsto =0 ,
local straight requires (x,7 / yn),7 = 0.Thus the right hand
side of the above equation equals zero:

a[yn(xgg T ¢X§) - Xn(ygg T ¢y§)] =0
X
Further: X +¢x§ — (y_n)(y§§ 4 ¢y§)
n
We are now working on the boundary with constant 7;.

SEoT-EnT 48/92
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Thus we have no way to calculate X, / Y, s Inorderto

determine this term following condition is utilized:

X

y77 Xé
Y. /X, can be computed on the line of 77 =constant
X
Thus substituting into: X.: +@X. = (y_n)(y55 + Py, ) m—
Yy n
Xff +¢X§ = _(X_g)(ygg +¢y§) ——l

Xg(xgg +M :é_yg(ygg ¢ )

yéyéé é ¥ (on n=0,7=1 boundaries)
X2+ Y2 —_—

Finally: ¢ = —

CFD-NHT-EHT
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Similarly: y =22 *%n (On £=0,£=1 boundaries)
% T Yy Generated by Laplace eq.
Application example of )

Thomas— Middlecoff

method

Thomas— Middlecoff

method for determining .

source functions of P,Q is
a good example of

creative numerical ]
method proposed by non- an)
mathematicians! i

ol
C

>.—-
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11.6 Transformation and Discretization of
Governing Eg. and Boundary Conditions

11.6.1 Transformation of Governing Equation

11.6.2 Transformation of Boundary Conditions

11.6.3 Discretization in computational plane

SEoT-EnT 51/92
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11.6 Transformation and Discretization of
Governing Eg. and Boundary Conditions

11.6.1 Transformation of Governing Equation
1.Mathematical tools used for transformation
1)Chain rule for composite function (5 & B S5
u(x,y) =u(x(c,n), y(S,m) Vv(X,y)=v(X(S,7),Y(S, 7))

cu ou)qau il 1d  Og
ox oy | | om| & oy
N | (v v | | qn o7

x oy | e ony @lx EY
ou ouoé N ou on

OX OF X On ox
cromT-enT g 7 52/92

yielding:
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2) Derivatives of function and its inverse function(fz &%%)

E(x,y),n(x,y) are the inverse function of x(&,7), y(&,7)
Their derivatives have following relation:

1 1 1 1
gx:jyn’nx:_jygiéy:_jxn’nyzj

2.Results of transformation of 2-D diffusion-convection
equation in physical Cartesian coordinate

o(pug) , 9(pve) _ aﬁ(r¢ ‘2_¢) + 2 ) 9y, R;(X, )

OX oy %
Results:

10
e

Xs

19 _1 01 (g -
(P9)+7 5 (V) =777 (.~ g )1+

10 1
FE[T(Z} (=po. +r9,)1+S,(E.m)

SEoT-EnT 53/92
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3. Explanation for results
1) Velocity U, V: U =uy, —VvX ,V =VX, —Uy,

U, V are velocities in &, 77 direction respectively in
comput. plane, called contravariant velocity (i 4% 3% &)

2) J: Jakobi factor, representing
variation of volume during
transformation:

dVv =

dednde

Computational.
space volume

Physical
space
volume

Larger than 1 means volume in

Factor of volume change: }
computational space Is reduced.

CFD-NHT-EHT
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3) &,y are metric (BE#R) coefficients in 77,&  direction

\/E,\/; are called Lame coefficientin 77, direction,
respectively.

s = Jadn d

IS a dlﬁ‘erentlal arc
length in curve with

Q:onstant 5 //

S(n)
IS a diffe tla arc length
In curve W|th constant 77

-
4) [ represents local orthogonality

SEoT-EnT 55/92
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11.6.2 Transformation of boundary condition

1.Uniform expression of B.C. in physical plane

A,B,C are given constants

[A = 0: second kind B = 0: first kind }

4 d
A, B are not zero: 3"

kind boundary
..condition )

SEoT-EnT 56/92
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During the transformation from physical plane to
computational plane

(1) The values of physical variables at correspondent
positions remain unchanged

(2)Physical properties /constant remain unchanged.

What different is the derivative normal to a boundary In
physical plane and in computational plane:

CFD-NHT-EHT
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@ | T 3@
_an 1 Phy _an 1Comp
It can be shown that
O¢ __‘%¢%__ﬁh%

8n(§) N J\/E

oQ _ 7/¢77 _IB¢§
an(ﬂ) J
/\ \\/; \

Boundary normal
derivative In
_physical space Y

Boundary normal derivative in physica
equal to boundary normal derivative in com

CFD-NHT-EHT
CENTER

g ¢. and ¢ are

_computational s

boundary
normal derivatives In

DaCe

/

space IS not

HAFF E A '

putational space.
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Example of boundary condition transformation

Boundary Condition -Physical Condition-Computational
1-2 L o0v_ oT _
U—O,ax—ax—() u=0;av, —pv, =al, - BT =0
2‘3_4 u:V:O,T :Th u:V:O,T :Th
ov oT
4-5 u=0,aX=aX:O u=0av.-pv, =al. - pT =0
50-6-1  u=v=0T=T, u=v=0T=T

6 5 a¢ _a¢§_18¢77_

an(f) - J\/; :

CENTER ] i, % 5 59/92
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Implementation of boundary ,,*
condition at 1°-2’ & 5

b1 v
al, =T, =0 =—T, = a”
The discretization of will be

9t a—
shown later. ¥ 4 =

11.6.3 Discretization in computational plane

1.Discretization of G.E.

Multiplying two sides of
the Gov.Eqs. by J, and
Integrating i1t over a CV at
staggered grid system:

CFD-NHT-EHT
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[(pU¢) —(pJg), JAn+[(pV @), — (V@) JAS =
(a¢§ 9,1 An - [ L (ad. — B, An+

I
[T¢ (—,3¢§ +7/¢,7)]nA§—[T¢ (—ﬂ% +19)lAE+SeJ e Ane A&

Note: Cross derivatives(3Z X 5%%) occurs in diffusion
terms.

2) Discretization of convective term —the same as In
physical space.

3) Cross derivatives In diffusion term 1|

l
il
g
o
S
=

Say. (¢ ), = (P + Pe) — (P + e ) q T-S‘—;i T
: 4An t_i_..]L._iL_J_
leading to 9-point scheme of 2-D case. b =

CFD-NHT-EHT
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Putting the cross derivatives into source term, obtaining
following results:

ApPp = AP + 3y @y +asPs +ayPy +D
F¢ e F¢ n
b=S,JAnAS _[(T L9, + (T po.) Ac]
The pressure gradient term is temporary included in S 5
4.Discretization of boundary condition
The key Is boundary derivative, 6,
As shown In the above example: ’
,BT ,B TB j+1 —Tg(i
T =17 ¥T.). = (J+1) B(J-1)
© o« ), o 2A1 .

CFD-NHT-EHT 3’ 4’
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11.7 SIMPLE Algorithm in Computational Plane

11.7.1 Choice of velocity in computational
space

11.7.2 Discretized momentum equation in
computational plane

11.7.3 Velocity correction in computational
plane

11.7.4 Pressure correction equation in
computational plane

11.7.5 Solution procedure of SIMPLE In
computational plane

SEoT-EnT 63/92
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[ 11.7 SIMPLE Algorithm in Computational Plane ]

11.7.1 Choice of velocity in computational space

1. Three kinds of velocity

1) Components in physical plane  (u,v)
2) Contravariant velocity (U,V) (#7484 &)
U=uy —vx, V=vX.—uy,
3) Covariant velocity (U,V) (125 4 &)
U=ux, +vy,, V=Ux +Vvy,
All the three kinds of velocity were adopted in refs.

SEoT-EnT 64/92
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According to W. Shyy (s 4E) : following combination
can satisfy the conservation condition the best: taking

U, V as solution variables and U,V as the velocity in
computational plane. We will take this practice.

11.7.2 Discretized momentum equation in
computational plane

1.Separating pressure gradient from source term

ap_@p8§+ap877 1, 0p

Ox AE X anox  J o0& ”_%yf)_ (p‘fy’?_p"yf)
Note: cross derivatives occur.

2. Discretized momentum equation in physical plane

65/92
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_ pP ):Zanbunb +b_Ay.5X. Py

a,u, = > a,u, +h—Ayesx( Pe

oOX
i —AY ® O X b
0, = XM+ )R+ ()
[ Subscript here denotes derivative ]

3. Discretized u,v equations in computational plane

Mimicking the above form for u,v In physical plane
for computational plane following form is taken:

=> AU, +(B'p.+C"p,)+ D"

=> AV, +(B'p.+C"p,) + D
1) (Up,Vp) are the velocities at respective locations of
cronnrenr  Staggered grid. 66/92
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2) A,B,C,D are coefficients and constants generated
during discretization.

11.7.3 Velocity correction in computational plane

1. u’,v’ equations 1n computational plane

From assumed p*, yielding u*, v*:
Up = D AUy, +(B'p; +C"p,) + D"

Vo =D ALV, +(B'p; +C"p,)+ D’
The correspondent U*,V* may not satisfy mass
conservation, and improvement of pressure Is needed.
Denoting pressure correction by p’, and the
correspondent velocity corrections by u’,v’;

CFD-NHT-EHT
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According to the SIMPLE practice, (p*+p’), (u*+u’), and
(v*+Vv’) also satisfy momentum equation:

(Up +Up) = Z'Ahb(u:b +u;1b)+[Bu(p2 + plg)"'cu(p; + p,;)]"‘ D"
Up = > Al +(B'p.+C"p, )+ D"
Subtraction of the two equzbtlons

u, —Z%nb+8”p§+C“

Similarly V, = vnb+BVp§+CVp

Omitting the effects of neighboring nodes:

yielding velocity correction: { U =B"p. +C7p,
v, =B'p.+C"p,

SEoT-EnT 68/92
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2. U’,V’ equations in computational plane (20191126)

By definition: |y = uy, —VX, , V — VX, Uy,

Thus U =u'y -vx =y (B'p,+C'p )~ ><,7O(BVp'i +C'p,)

U, = 5By, ~B%) ¢ By~ T

New assumption : cross derivatives in
contravariant velocity are neglected

ThUS:U;:) — p%(BUyn_BVXn):(Bp;Z) ,B — Buyn _BVX77

Similarly: VF; — p;7 (Cvxé _Cuyg) — (Cp' v [ Attt of
CEDNHT-ENT [ At location of V, U

CENTER 6 9/ 9 2
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11.7.4 Pressure correction equation in computational
plane

1. Discretized mass conservation in computational plane

From mass conservation U oV

In physical plane: PVl dy =

Its correspondent formin 5 6\/

computational plane can of 3 =0

be obtained: d
Integrating over control volume P

(PUAR), —(PUAR), +(PVAS), —(PVAS), =0
2. Pressure correction equation in computational plane
Substituting (U™ +U),(V"+V ),U =Bp.,V =Bp,

CFD-NHT-EHT
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Into mass conservation eg., and re-writing in terms of p’:
Ao Pp = Az Pe + Ay By + A Py +Asps+b
b = (pU"An), —(pU A7), +(pV AE), —(AV AS),
An An AE AE
= B— , o B— , — C— n? o C— s
A =(p 55)9 Ay =(p 55)W Av=(p 577) A =(p 577)
3. Boundary condition of pressure correction equation

Homogeneous Neumann condition:
boundary coefficient =0

11.7.5 Solution procedure of SIMPLE in computational
plane

1. Assuming velocity field of u,v ,calculating U,V by
definition and discretization coefficients;

(5] eronmren 2. Assuming pressure field p* and solving for (u,,V,) 71/92
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3. From u”,v'calculating (U,V;) by definition;
4. Solving pressure correction eqg., yielding p’;

5. Determining revised velocities

u, =U;+(Bup;g+cup;7_)/’u'; ZBup('f+Cup7'7
Vo, :v’lf,+(BVp;g+CVp;7_)/vv'p=BV|3;Z+CVIO,'7
U, =U;+(B“yn+C“xn)pj'/'U'p = pg(B“yn -B'X,)
Ve =V, +(C'%. +C"y.)p, —1V, = p. (C'x. —C"y.)
pP=p +a,p

6.Starting next iteration with improved velocity and
CFD-NHT-EHT p reSSU re . 72/92
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11.8 Post-Process and Examples

11.8.1 Data reduction should be conducted
In physical plane

11.8.2 Examples

1. Example 1—Natural convection in a circle with
hexagon (7N FE)

2. Example 2—Forced flow over a bank of tilted (i)
plates

3. Example 3—Periodic forced convection in a duct
with roughness elements

4. Example 4—Periodic forced convection in a wavy
CFD-NHT-EHT Channel 73/92
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[ 11.8 Post-Process and Examples ]

11.8.1 Data reduction should be conducted in
physical plane

Data reduction (post process, )54t #H) should be
conducted for the solutions in the physical plane.

The results in the computational plane can not be

directly adopted for data reduction by using definition
In physical plane.

For example, the volume of a control volume is:
AV = Jdédndc rather than d&dndg
11.8.2 Four examples

CFD-NHT-EHT
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1. Example 1—Natural convection in a circle with
an inner hexagon(7~i4 %)
12}§3rid generation — algebraic method
E=0 (Polar coordinate)

r—a(é
= (0) |
ro_a(e) d ! a
X
VN —
— c e b‘?—

T x=[a(&) +nlK, ~a()]cos(7—2) ggg;gﬁa';”e)

y =[a(&) + 7K, ~a(@)lsin(- <)

2) Local Nusselt on inner surface

SEoT-EnT 75/92
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On inner surface 77 =0, @),7 o=

®§ - 2_?)77—0 =0 Nui — _(J\/n;)i
The averaged Nusselt number can
be obtained by integration

of Nu; over the inner surface.

3) Partial results

10E

® T HR[44 ]8T E
8 Raithby ZHHE

—
ﬂleq [ — 0.26
1p—on A =0.181Ra

1 & ¢ bl 41 el Lo aragtd
b 107 10° 10* 105

CFD-NHT-EH R,
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19,50

S O CLC X
] [an"”]' | N2

Ra= 9.2x10*

@.

Isothérms
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Zhang H L et al. Journal of Thermal Science, 1992, 1(4):249-258

2. Example 2—Forced flow over a bank of tilted
plates

1) Grid generation —algebraic method

Data reduction iIs conducted for one cycle:

A-G-H-[-J-K-L-F-E-D-C-B-A
2) Data reduction procedure

SEoT-EnT 77192
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Local heat flux calculation should be conducted as
shown in example 1.
3) Partial results

—— ° LIS |
Leeward---& X\ If a%®
oty Joo @ :
ﬁmﬁ : Y 23 10 a. a a
- .':.é . a @ 10? Re
éﬁ’: | P & 3 .
== 10> Re 10°
= g 10F * LK
..... t 23 o HE |
“ F @ o 0.“.!-“0%%':'”
> 3333 : |
T U
Wina Ward---i X\ [

Wang L B, etal. ASME Journal of Heat Transfer, 1998, 120:991-998
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3. Example 3—Periodic forced convection in a duct
with roughness elements

1) Grid generation — Boundary normalization

disturbance r

P od D c
- % o
q
Aot T -
i RN .-
2) Numerical methods L-

(1) Steady vs. unsteady — Unsteady governing equation

IS used to get a steady solution for the case of

(H/E=5, P/E=20,Re = 700). The results are compared with
those from steady equation. The differences are small:
Nu-3%, f-lessthan 1%;. Thus steady eq. is used.

SEoT-EnT 80/92
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(1) Scheme of convection term—PLS was used. Reviewer
required : it should be shown that false diffusion effect
could be neglected. Simulation with CD was conducted
and comparison was made.

Table I. Comparison of results using PLDS and CDS

Re 50 100 200 400 700
Nu  PLDS 7.811 8.166 8.988 10.648 12.776
CDS 7.811 8.172 8.925 10.354 12.994

f PLDS 2.3980 1.2197 0.6319 0.3352 0.1999
CDS 2.3980 1.2198 0.6298 0.3329 0.2089

3) Partial results

Yuan Z X, etal. IntJournal Numerical Methods in Fluids, 1998, 28:1371-
1378
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U (a) Re=50 (b) Re=200

(d) Re=700

Figure 4. Flow patterns at different Reynolds numbers (H/E =35, P/E=1.5). (a} Re = 50; (b) Re = 200; (¢} Re =400;
(d} Re =700.
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4. Example 4—~Periodic forced convection in a wavy
channel

1) Grid generation — (Block structured + 3D Poisson)

- top .7 S outlet
“\Z\

SN :
L < tube region
) ‘,/”’?;ont cross section of

- fin sheet

bottom

B |
%ﬁf (Taking plain channel as an example)

2 _
Uy Xer + U X+ AggX o + 200X, + 200X, + 205X - +I°(PX, + QX +RX,) =0

Oy Yee + Y, + 0y Yo +200,Y ., +2005Y, + 200, + Z(Py§ +Qy, +Ry,)=0

2 _
O Zes + 0yl + Qgglr + 200,27, + 20052, +20,,2, - +J° (P2, +Qz, + Rz, ) =0
CFD-NHT-EHT
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2) Grid-independence examination

One row ] B ——
ol -\ 78X 12X10

102(x) x 22(y) x10(z) | \ 142X 12X 10

Two-row 2| \

142 % 22 %10 g 2| \Tvvo—rovv bank

Three-row 2l \

182 x 22 %10 ol <[ 142X 22X 10

Four-row Wl &~ TR

192X 22X10 0 | 20(IJOO | 4O(I)OO | 60(I)OO | 80CI)00 .lOOIOOO

cENTER T Grids number 84/92
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3) Partial results of two-row bank <>
: ST B
Velocity C_ilS'[I‘IbU'[IOﬂS of M-S BEE A= -
three sections = <>

vITTI

TaoY B, etal. IntJournal Heat Mass Transfer, 2007, 50:1163-1175

End of the 15t part of the course NHT!
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Computer-Aided Project of 2019 Numerical Heat Transfe
Xi’an Jiaotong University
We present three computer-aided projects: one Is to be
solved by our teaching code (Project 1) , the 2" and 3
ones are to be solved by FLUENT (Fundamental , Project
2, Intermediate Project 3) . Every student can choose one
project according to your interest and condition.

For the first project the self-developed computer
code should attached in your final report.

For the second and third project Class F and Class |
will have different projects. The instructors will assign
the project at the end of the lecture.

CFD-NHT-EHT
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Computer-Aided Project (1) of NHT-2019, Xi’an Jiaotong University
(Laminar natural convection in annular space)
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1. Project formulation

For air natural convection within an annular space as shown in Fig. 1, following

conditions are given: O / 1, =0.4, flow is laminar and the average air temperature is 50" C

For Ra =gpATo 3V/ a’ = 10%,10°,10*,10° , determine the relative thermal

conductivity: A, /A, The temperature difference between inner wall and outer wall is not

large, so the Boussinesq assumption can be adopted. By using Tecplot or other software,

display the isotherms and streamlines and the variation of A, / A . vs.Ra. Natural

convection heat transfer rate between the mner and outer surface 1s expressed by an
effective thermal conductivity A, as follows:

2711 AT /qu Is the equivalent thermal
= - conductivity of the entire annular
In(d,/d,) space.

SEoT-EnT 88/92
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2. Suggestions and Requirements

1) Considering the symmetry of the geometry, only half of the
structure should be simulated.

2) The solution should be grid-independent.

3) The project report should be written in the format of the Journal of
Xi’an Jiaotong University. Both Chinese and English can be
accepted.

4) Examples 9-4 (Mode=3) and 9-6 (Natural convection) may be
consulted.

5) Please submit in the USER part developed by yourself for solving
the problem.

The project report should be due in before April 30,
2020 to room 204 of East 3™ Building of Xingqing
campus. If you need the course score earlier, please
submit your report ealier too and inform me.
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Local Kuehn T H, Goldstein R J. An experimental and theoretical study of
dimensionless natural convection in the annulus between horizontal concentric
cylinders. J Fluid Mech, 1971, 74:605-719
thermal onductivity

: - — 1135_\ #1318 [£I8-11+ a2
Sy ol \W% » LW Test data
) ol o |
A H8ME Numerical
7t \\/ -
AT 6 Ouber surface
Local relative & S AN B3]
thermal 4} N
conductivity 3t Inner surface
2
7 — qconvection 1 \‘\ -
_( )0 - — . 4
015 30 45 60 75 90 105 120 135 150 165180

conduction

B $4 0/
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Numerical Experiment

SI by tical method

Y LI SR &M

S A
Ray 4.7x10* 5x10*
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