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a b s t r a c t 

The appearance of shock anomaly is a major unsolved problem for some low diffusion schemes when 

simulating the hypersonic flow. In this paper, a simple method is proposed to enhance the robustness of 

the low diffusion schemes to overcome the shock anomaly. The main idea of this method is adding an 

appropriate extra term to the original low diffusion schemes without influencing the accuracy in aero- 

dynamic heating prediction. This extra term is derived from the difference between the flux splitting 

scheme (FVS) and the advection upstream splitting method+ (AUSM+). Adding this term to three low dif- 

fusion schemes, seven typical numerical tests are conducted to examine the capability of those schemes. 

Numerical results show that the three new schemes turn out to be carbuncle-free and shock-stable with- 

out losing their original accuracy in prediction of aerodynamic heating, validating the feasibility and re- 

liability of the proposed method. 

© 2020 Published by Elsevier Ltd. 

1

c

fl

1

t

i

t

t

m

w

w

s

s

t  

f

c

A

t

s

b

B

b  

s

i

i

t

t

F

I

m

t

s

F

a

c

e  

I

d

p

s

s

a

p

d

s

r

o

h

0

. Introduction 

Over the years, the numerical schemes to calculate the invis- 

id fluxes of Euler/Navier-Stokes (N-S) equations in compressible 

ow simulations have a great development. In the early years of 

960s–1970s, the central schemes were commonly used [1] . But 

hose schemes have some disadvantages such as poor accuracy 

n resolving intermediate characteristic fields and free parame- 

ers which are dependent on the problems [2] . In the late 1970s, 

he upwind schemes were introduced. The upwind schemes have 

any advantages such as a good robustness and being consistent 

ith the physical characteristic. Nowadays, the widely used up- 

ind methods include flux vector splitting (FVS), flux difference 

plitting (FDS) and AUSM (advection upwind slitting method)-type 

cheme. FVS is considered to be a natural consequence of the idea 

hat regards a fluid as an ensemble of particles [3] . At the inter-

ace, some particles will move forward, others backward. The invis- 

id fluxes are automatically split into forward and backward fluxes. 

ctually, this kind of splitting method can be obtained by split- 

ing the eigenvalue matrix of the Jacobian matrix. Different FVS 

chemes such as Steger-Warming (SWS) and Van Leer (VLS) have 

een presented according to different splitting implementations. 

ecause of the capability of capturing the shock accurately and ro- 

ustly, FVS had been very popular during the Euler era [3] . But this

cheme has a poor accuracy in the boundary layer region which 
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s attributed to its nature of excessive numerical diffusion. So it 

s an undesirable scheme for solving the N-S equations. According 

o Godunov’s idea of regarding the compressible flow problem be- 

ween two adjacent grid cells as a local Riemann problem [4] , the 

DS schemes such as Roe’s FDS [5] , HLL and HLLE were proposed. 

n these schemes, either an exact or approximate solution of Rie- 

ann’s problem is used to compute the numerical fluxes at cell in- 

erface. It is reported that these schemes can provide the accurate 

olution on capturing the discontinuities. For the N-S solver, the 

DS schemes have the good performance on resolving the bound- 

ry layer owing to its low numerical diffusion. However, the effi- 

iency of FDS is inferior to that of FVS. AUSM which combines the 

fficiency of FVS and the accuracy of FDS was proposed in 1991 [6] .

n this method, the cell-face advection Mach number is used to 

etermine the upwind direction of the convective quantities. The 

ressure at the interface is calculated by summing two pressure 

plitting terms. It is reported that AUSM has low numerical diffu- 

ivity [7] . This simple and accurate scheme was very popular and 

ttracted lots of attention. Several similar schemes were then pro- 

osed to improve the AUSM such as AUSM+ [8] and AUSMPW+ [9] . 

As mentioned above, enormous advances have been obtained 

uring the last forty years. It seems that the numerical flux 

chemes are almost mature. However, as pointed out by some 

esearchers [1,10,11] , in order to get a better numerical solution 

f the entire computation domain for hypersonic numerical sim- 

lations, the two basic problems are still remained [10,11] , i.e., 

he boundary-layer resolution and the robustness against shock 

nomalies. In this paper focus will be put on the shock anomaly 

https://doi.org/10.1016/j.ijheatmasstransfer.2020.120757
http://www.ScienceDirect.com
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Nomenclature 

a acoustic speed, m / s 

E total energy, J / kg 

H enthalpy, J / kg 

M Mach number 

p pressure, Pa 

t time, s 

T temperature, K 

u velocity in x-direction, m / s 

v velocity in y-direction, m / s 

x Cartesian coordinate, m 

y Cartesian coordinate, m 

Greek symbols 

β correction factor 

ε correction factor 

γ specific heat ratio 

λ thermal conductivity, Wm 

−1 K 

−1 

μ dynamic viscosity, Pa · s 

ρ density, kg / m 

3 

τ stress tensor 

Subscripts 

L left 

R right 

1 / 2 interface 

∞ freestream 

roblem. A common shock anomaly is the carbuncle phenomenon. 

n 1988, Peery and Imlay [12] used Roe’s FDS to study the hyper- 

onic flow over a blunt body and found some abnormal bow shock 

olutions before the stagnation point. They firstly named it as car- 

uncle phenomenon. There are also some other shock anomalies 

uch as kinked Mach stem found in double Mach reflection prob- 

em and odd-even decoupling solution in Quirk’s test [13] . It is re- 

orted that the low numerical diffusion schemes such as Roe’s FDS, 

USM+ and AUSMPW+ usually suffer from the shock anomalies 

14] . Although the FVS schemes are free from the shock anoma- 

ies because of the good robustness, but they have the problem of 

oor accuracy of resolving the boundary-layer. 

There have been lots of studies about the shock anomalies. Pan- 

olfi and D’Ambrosio analyzed some significant aspects of the car- 

uncle phenomenon [15] . It is observed that grid aspect ratio is 

 very important factor on initiating the carbuncle phenomenon. 

he spindly grid cells along the normal direction of the shock 

sually promote the anomalies. It is also reported that this phe- 

omenon often appears when first-order accuracy in space is used. 

iou studied the numerical diffusivity of several outstanding up- 

ind schemes and proposed a conjecture that if the mass flux of 

he upwind scheme did not rely on the pressure term, the scheme 

ould be free from carbuncle phenomenon [16] . However, some 

ounterexamples of this conjecture [17] indicate that Liou’s con- 

ecture may not be suitable for all the schemes. Xu studied the 

hysical reason of shock instability and came to a conclusion that 

he shock anomalies did not occur on unstructured grid [18] . But 

his is contrary to the study of Ramalho et al. [19] . Sanders et al.

nalyzed the shock instability in strictly upwind finite difference 

chemes and proposed a possible method to cure the carbuncle so- 

ution [20] . But it is reported that this method has some problems 

n resolving the boundary-layer [15] . The rotated method and mul- 

idimensional hybrid method were proposed to cure the carbun- 

le phenomenon in [21–23] . But some problems still exist accord- 

ng to the research results of [24] . Some other different methods 
2 
o cure the carbuncle phenomenon have been proposed [15,25,26] . 

ut, they are later proved to be none universally effective [27] . 

From the above brief review, it seems that the reasons of caus- 

ng the shock anomalies are still not very clear [28] and the meth- 

ds to cure the anomalies proposed are case dependent. It is well- 

nown that the cures of the shock anomalies are very important 

or simulating the hypersonic flows accurately. Thus, this problem 

hould be further studied. Recently, there are some new meth- 

ds published to reduce the shock anomalies [28–32] . In summary, 

ne new method should have the capability of reducing the shock 

nomalies and resolving the boundary-layer. In this paper, such a 

ew method is proposed in the finite volume framework. The ma- 

or idea of this method is adding an extra term to a low-diffusion 

cheme such that the original scheme turns to be a more dissipa- 

ive but shock-robust FVS near a shock wave. Applying this method 

o schemes of Roe’s FDS, AUSM+, and AUSMPW+, some numerical 

ests are studied. The results show that this simple method can 

nhance the robustness of those schemes without influencing the 

ccuracy in the prediction of aerodynamic heating. 

In the following, the governing equations of the compressible 

ow will first be briefly presented, followed by the detailed de- 

cription of the proposed method. Then some numerical examples 

ill be provided, including one-dimensional Riemann problems, 

wo-dimensional Riemann problem, double Mach reflection prob- 

em, odd-even problem, inviscid flow over a cylinder, compress- 

ble laminar flow over a flat plate, and viscous flow over a cylin- 

er. In the numerical solutions of all these problems, the proposed 

ethod shows its wide applicability. Finally, some conclusions are 

ade. 

. Governing equations 

The compressible N-S equations in two-dimensional space can 

e written as: 

∂U 

∂t 
+ 

∂F 1 
∂x 

+ 

∂F 2 
∂y 

= 

∂F ν1 

∂x 
+ 

∂F ν2 

∂y 
(1) 

here U and F 1 , F 2 are the conservative variables and the inviscid 

uxes, respectively. They are given by 

 = 

⎡ 

⎢ ⎣ 

ρ
ρu 

ρv 
ρE 

⎤ 

⎥ ⎦ 

, F 1 = 

⎡ 

⎢ ⎣ 

ρu 

ρu 

2 + p 
ρv u 

ρHu 

⎤ 

⎥ ⎦ 

, F 2 = 

⎡ 

⎢ ⎣ 

ρv 
ρu v 

ρv 2 + p 
ρHv 

⎤ 

⎥ ⎦ 

(2) 

ere, ρ is the density. u, v are the components of velocity in x, y 

irection. E is the total energy. p is the pressure which can be cal- 

ulated as: 

p = (γ − 1) ρ[ E − (u 

2 + v 2 ) / 2] (3) 

he enthalpy H is given as H = 

γ
γ −1 p/ρ + (u 2 + v 2 ) / 2 . The viscous

uxes F ν1 and F ν2 are 

 ν1 = 

⎡ 

⎢ ⎣ 

0 

τxx 

τxy 

uτxx + v τxy + λ∂T 
∂x 

⎤ 

⎥ ⎦ 

, F ν2 = 

⎡ 

⎢ ⎣ 

0 

τyx 

τyy 

uτyx + v τyy + λ∂T 
∂y 

⎤ 

⎥ ⎦ 

(4) 

ere, τ is the stress tensor of the fluid. T is the temperature. The 

ynamic viscosity of air μ is obtained by the Sutherland formula. 

he thermal conductivity of air is calculated as λ = c p μ/P r. For a

alorically perfect gas, γ = 1 . 4 and the Prandtl number P r is taken 

s 0.72. 

. The method of improving the low diffusion schemes 

As mentioned in the introduction, most of the low diffusion 

hock-capturing schemes suffer from the problem of shock anoma- 
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ies. In order to against the shock anomalies without losing the ac- 

uracy in the boundary-layer, one of the ideas is keeping the ca- 

ability of FVS on simulating the shock wave while holding the 

ow diffusion property in the boundary-layer. Following this idea, 

e proposed a method of adding an extra term to the original low 

iffusion schemes to increase the robustness without losing the ac- 

uracy in the boundary-layer region. In the finite volume method, 

he extra term of the inviscid fluxes at the cell interface is given 

s: 

 add = βε3 / 2 a 1 / 2 [ M 

+ 
L (�L − �1 / 2 ) + M 

−
R (�R − �1 / 2 )] (5) 

ere, β and ε are the correction factors. The Mach number at the 

eft and right side of the cell interface M L/R and the sound speed 

t the cell interface a 1 / 2 are calculated as follows [9] 

M L/R = 

(u n ) L/R 

a 1 / 2 
, a 1 / 2 = min (a L , a R ) 

a = (a ∗) 2 / max (| u n | , a ∗) , a ∗ = 

√ 

2 

γ −1 
γ +1 

H 

(6) 

= [ ρ, ρu n , ρu τ , ρH] T . u n and u τ are the velocity in normal di-

ection and tangential direction, respectively. �1 / 2 is calculated ac- 

ording to the Mach number at the cell interface M 1 / 2 as 

1 / 2 = 

{
�L M 1 / 2 ≥ 0 

�R M 1 / 2 < 0 

(7) 

 

± is calculated as the one in reference [8] : 

 

± = 

⎧ ⎨ 

⎩ 

±1 

4 

(M ± 1) 2 ± 1 

8 

(M 

2 − 1) 2 | M| ≤ 1 

1 

2 

(M ± | M| ) | M| > 1 

(8) 

When calculating the inviscid fluxes at the cell interface, a new 

cheme can be obtained by adding F add to the fluxes of the original 

ow diffusion scheme as follows: 

 NEW 

= F original + F add (9) 

In the following, the correction factors β and ε will be defined 

nd discussed. 

.1. The correction factors 

The region of the correction factors β and ε are both set to 

0,1]. The first factor β is designed to meet the following condi- 

ions: 

d β

d M b 

= C 0 M 

3 
b (1 − M b ) 

3 

(M b = 0) = 0 , β(M b � 1) = 1 

(10) 

ere, C 0 is the constant. The local Mach number at the cell inter- 

ace M b and its component in i direction M i are defined as: 

 i =1 = 

| u L + u R | 
2 a 1 / 2 

, M i =2 = 

| v L + v R | 
2 a 1 / 2 

, M b = 

√ 

M 

2 
1 

+ M 

2 
2 (11) 

y solving the above equations, the expression of β can be ob- 

ained as 

= 

{
35 M 

4 
b 

− 84 M 

5 
b 

+ 70 M 

6 
b 

− 20 M 

7 
b 

0 ≤ M b ≤ 1 

1 M b > 1 

(12) 

he variation of β with M b is shown in Fig. 1 . 

The second correction factor ε is defined as 

= 

⎧ ⎨ 

⎩ 

1 

max (N − 1 , 1) 

N ∑ 

i =1 

(
1 − M i 

M b 

)2 

M b � = 0 

0 M b = 0 

(13) 

ere, N is the number of dimension. From the definition of ε, it 

an be seen that ε has the property of the variance in statistics. In 
3 
wo-dimensional situation, the larger the difference between M 1 

nd M 2 , the greater the ε. For the situation of M b � = 0 , the above

quation can be simplified as 

(M b � = 0) = 

{ 

3 − 2 

M 1 + M 2 

M b 

N = 2 

0 N = 1 

(14) 

.2. The analysis of the extra term 

In 1995, Liou proposed the AUSM+ scheme to improve the 

USM [8] . It is reported that this scheme can resolve the 

oundary-layer and discontinuities exactly because of its low diffu- 

ion. In the AUSM+, the interface Mach number is used to decide 

he upwind direction. It is calculated as M 1 / 2 = M 

+ 
L 

+ M 

−
R 

. In the

cheme, the inviscid fluxes at the interface are calculated as [8] 

 AUSM+ = a 1 / 2 (M 

+ 
L + M 

−
R ) �1 / 2 + P + L p L + P −R p R (15)

n the other hand, one simple FVS can be rewritten as [33] 

 F V S = a L M 

+ 
L �L + a R M 

−
R �R + P + L p L + P −R p R (16)

ere, the M 

± and P ± have little differences with those used in 

q. (15) . 

Thus, compared with the above low diffusion scheme AUSM+, 

he extra diffusion of FVS can be expressed as 

 extra = F F V S − F AUSM+ 
= a 1 / 2 [ M 

+ 
L (�L − �1 / 2 ) + M 

−
R (�R − �1 / 2 )] (17) 

In the above equation, the differences between a 1 / 2 , a L , and a R 
re neglected. Due to this extra diffusion, FVS is very robust on 

imulating the shock wave, while having the poor accuracy on re- 

olving the boundary-layer. 

Actually, this poor accuracy property of FVS can be easily 

emonstrated with the condition of M L = M R = 0 . Under this zero- 

elocity condition, the inviscid fluxes at the interface should be 

 1 / 2 = p 1 / 2 . However, the fluxes obtained by FVS can be written 

s: 

 1 / 2 = C(a L �L − a R �R ) + p 1 / 2 (18) 

ere, the parameter C is not equal to zero. The value of C depends 

n which kind of FVS is used. For van Leer FVS, C is 0.25. Thus, 

he convective fluxes obtained by FVS are not necessarily equal to 

ero when M L = M R = 0 . This property is obviously unsuitable for 

esolving the boundary-layer. 

As mentioned above, our principle is enhancing the robustness 

ithout losing the accuracy of the scheme in the boundary-layer. 

his means that the extra diffusion term F extra should be reduced 
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Table 1 

Data of the 1-D Riemann problems. 

Test ρL u L p L ρR u R p R x 0 t end 

1 1.0 0.75 1.0 0.125 0.0 0.1 0.3 0.2 

2 5.99924 19.5975 460.894 5.99242 −6.19633 46.095 0.4 0.035 

Fig. 2. The surface of βε3 / 2 . 
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n the boundary-layer region, especially when M L and M R are very 

lose to zero. Therefore, the correction factor of β in Eq. (5) is in- 

roduced to let the influence of FVS be very small in the boundary- 

ayer region. One simple form of β can be designed as a monotone 

ncreasing function with the conditions β(M b = 0) = 0 , β(M b � 

) = 1 . In addition, the following smooth increasing conditions are 

et to meet 

d β

d M b 

| M b =0 , 1 = 0 , 
d 

2 β

d M 

2 
b 

| M b =0 , 1 = 0 (19) 

hus, Eq. (10) is implemented to determine the final form of β . 

s reported in the reference [15] , shock anomaly often appears in 

he normal shock wave. The extra diffusion term F extra can be fur- 

her limited. The extra diffusion of enhancing the robustness only 

eeds to be equal to F extra near the normal shock region. It is well

nown that one of the features of a normal shock wave is that the 

ifference between the velocity at the flow direction and the veloc- 

ties at the other directions is large. Therefore, by referring to the 

dea of the variance in statistics, the second correction factor ε in 

q. (13) is adopted to assess the difference between the velocities 

t different directions. 

In summary, the term βε3 / 2 in Eq. (5) can be regarded as the 

witch function. Writing M 1 = M b cos (θ ) and M 2 = M b sin (θ ) , the

alue of βε3 / 2 can be obtained in Fig. 2 . From the figure, it can be

bserved that βε3 / 2 is quite small when M b tends to zero. We have 

he relation βε3 / 2 (M b = 0) = 0 . Therefore, in the boundary-layer, 

he extra term F add is small. It also can be found that βε3 / 2 (θ = 

 

◦, 90 ◦) is equal to 1 near the shock region. It means that the F add 

s equal to the whole extra diffusion F extra at this situation. The 

bove analysis shows that the extra diffusion F extra can be reduced 

n the boundary-layer by using the present extra term of Eq. (5) . 

. Numerical experiments 

As shown above, it is very easy to implement the present 

ethod in the finite volume framework. In this section, seven typ- 

cal tests are simulated to examine the performance of three new 

chemes which are obtained by adding F add to Roe’s FDS, AUSM+, 

nd AUSMPW+ respectively. These seven cases are: 

1. 1D Riemann problems, 

2. 2D Riemann problem, 

3. Ma ∞ 

= 10 double Mach reflection, 

4. Ma ∞ 

= 6 odd-even problem, 
4 
5. Ma ∞ 

= 20 inviscid flow over a cylinder, 

6. Ma ∞ 

= 0 . 8 viscous flow over a flat plate, 

7. Ma ∞ 

= 6 . 47 viscous flow over a cylinder. 

In these simulations, the first five cases are used to assess the 

apability of the new schemes on capturing the discontinuities. 

he accuracy of the new schemes on resolving the boundary layer 

s evaluated in the final two cases. 

.1. One-dimensional Riemann problems 

One dimensional Riemann problems are always used to test 

he capability of the numerical schemes on calculating different 

ypes of waves. Two typical one-dimensional tests are simulated. 

ollowing the simulations in reference [4] , the first-order accu- 

acy schemes in time and space are also used here. At the ini- 

ial time, the flow field consists of two constant states (ρL , u L , p L ) 
T 

nd (ρR , u R , p R ) 
T . At the initial position x = x 0 , the two constant

tates are separated by a discontinuity. The results are compared 

t the ending time t = t end . The values of the above variables are

iven in Table 1 . Here, we use the two-dimensional domain to sim- 

late these one-dimensional problems. The correction factor ε is 

qual to 1. In these tests, the spatial domains are x ∈ [0 , 1] × y ∈
0 , 10�x ] . 100 grid points are used in x-direction ( �x = 0 . 01 ) with

ime step �t = 0 . 0 0 025 . 

Test 1 is a variant version of the famous Sod’s test [4] . A right

ravelling shock wave, a contact wave and a left rarefaction wave 

xist in the solution. It is a very fundamental test. Test 2 is mainly 

esigned to assess the ability of resolving slowly-moving contact 

iscontinuities. The results of these two cases obtained by using 

ifferent schemes are displayed in Figs. 3 and 4 . It can be observed

rom the figures that there are nearly no differences between the 

esults of the new schemes and the ones of the original schemes. 

hus, in one-dimensional situation, the numerical results of differ- 

nt waves with different strength show that adding the present 

xtra diffusion does not significantly influence the performance of 

he original schemes. 

.2. Two-dimensional Riemann problem 

Compared with the above one-dimensional cases, the two- 

imensional Riemann problem usually consists of a plethora of ge- 

metric wave patterns which cause some computational difficulties 

34] . In this test, the computation domain is x ∈ [0 , 1] × y ∈ [0 , 1] .

0 0 ×40 0 grid cells are used to discretize the domain. The time 

tep �t is 0.0 0 01. A typical case is chosen in this test with the

ollowing initial flow field. 

p, ρ, u, v ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

(0 . 4 , 0 . 5313 , 0 , 0) x ∈ (0 . 5 , 1] , y ∈ (0 . 5 , 1] 
(1 , 1 , 0 . 7276 , 0) x ∈ [0 , 0 . 5) , y ∈ (0 . 5 , 1] 
(1 , 0 . 8 , 0 , 0) x ∈ [0 , 0 . 5) , y ∈ [0 , 0 . 5) 
(1 , 1 , 0 , 0 . 7276) x ∈ (0 . 5 , 1] , y ∈ [0 , 0 . 5) 

(20) 
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Fig. 3. Density and internal energy profiles for Test 1. 

r

a
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l

a

t

This simulation is implemented using the second-order accu- 

acy scheme [35] with minmod limiter for spatial discretization 

nd the second-order Runge-Kutta scheme for time-integration. At 

ime t = 0 . 25 , the results of the density field obtained by the three

chemes and their revised versions are compared in Fig. 5 . It can 
5 
e found that the results of the original and new schemes have 

ittle differences. Adding the extra diffusion does not influence the 

ccuracy of the original schemes. These results are very similar to 

hose of [34] . 
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Fig. 4. Density and velocity profiles for Test 2. 
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.3. Double Mach reflection problem 

The double Mach reflection problem is usually used to check if 

ne scheme can produce a nonphysical artifact which is caused by 

nsufficient transverse dissipation. This nonphysical artifact usually 

ppears as the kinked Mach stem when using lots of the low diffu- 

ion schemes to solve this problem. In this test, the spatial domain 

s x ∈ [0 , 4] × y ∈ [0 , 1] . 400 × 400 grid cells are used in the simu-
6 
ation with the CFL number equals 0.5. At the initial time, a Mach 

0 shock is set obliquely in the domain. The initial conditions are 

s follows: 

ρ, u, v , p) = 

⎧ ⎨ 

⎩ 

(8 . 0 , 8 . 25 cos (30 

◦) , 
−8 . 25 cos (30 

◦) , 116 . 5) x < 

1 
6 

+ 

y √ 

3 

(1 . 4 , 0 . 0 , 1 . 0) x ≥ 1 
6 

+ 

y √ 

3 

(21) 
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Fig. 5. Density contours of the 2-D Riemann problem. 
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The detailed information about this problem can be found 

n [36] . As mentioned in Section 1 , the grid aspect ratio and

rst-order accuracy scheme in space are very important fac- 

ors in initiating the shock anomalies. In order to critically vali- 

ate the new schemes, a very large aspect ratio ( �x/ �y = 4 ) is

sed. In this test case and the following simulations about shock 

nomaly, the first-order accuracy schemes in space and time are 

dopted. 
t

7 
At time t end = 0 . 2 , the results obtained by the different schemes

re compared in Fig. 6 . From the density contours, it can be seen

hat Roe’s FDS, AUSM+ and AUSMPW+ all produce the kinked Mach 

tem. By adding the present extra diffusion term, the results of 

hese schemes are improved and such phenomenon does not ex- 

st. In this typical and severe test case, the results clearly demon- 

trate that the present extra diffusion term can significantly in- 

rease the robustness of the low diffusion schemes to eliminate 

he phenomenon of kinked Mach stem. 
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Fig. 6. Density contours of the double Mach reflection problem. 
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.4. Odd-even problem 

The odd-even problem which was first proposed by Quirk is 

sually used to examine whether a scheme is free from shock 

nstability [13] . This test corresponds to the problem in which a 

ach 6 planar shock moves from the left to the right in a duct. In

ur simulation, the computational domain is discretized by a struc- 

ured grid with 800 × 20 cells. The size of each grid cell is �x =
y = 1 . 25 . The CFL number is 0.5. At initial time, ρ = 1 . 4 , p =
 . 0 , u = 0 , v = 0 . According to the Rankine-Hugoniot equations, the

eft boundary which can be regarded as the post-shock condition is 

= 7 . 376 , p = 41 . 833 , u = 4 . 861 , v = 0 . The right boundary is zero

radient condition. The top and bottom boundary are both solid 

all. In the simulation, some grid perturbations are introduced at 

enter-line of the grid as follows [33] : 

 i, j mid 
= y j mid 

+ (−1) i × 10 

−n (22) 

ere, i is the grid subscript in x-direction, n is taken as 2. 

It is well-known that the small grid perturbations usually cause 

any upwind schemes to fail to simulate this simple problem. In 

his simulation, first order spatial accuracy is used. At time t = 150, 

he results of the density field obtained by different schemes are 

ompared in Fig. 7 . As shown in the figure, the shock instabilities

an be found in the results of Roe’s FDS, AUSM+ and AUSMPW+. 

n the contrary, their correspondent new schemes can perfectly 

imulate this problem because of the good robustness obtained by 

he present extra diffusion term. 

.5. Ma ∞ 

= 20 inviscid flow over a cylinder 

As mentioned in the introduction, the carbuncle phenomenon 

as firstly named in the simulation of hypersonic flow over a 

lunt body. So this kind of problem is a typical one to check 
8 
f a scheme can cause catastrophic carbuncle failings. The car- 

uncle phenomenon often means a spurious solution of the bow 

hock near the flow center line ahead of the blunt body. Here, the 

roblem of Mach 20 flow over a cylinder is chosen to test these 

chemes. The radius of the cylinder is 1. The initial states are ρ = 

 . 4 , p = 1 . 0 , u = 20 , v = 0 . The computational domain is covered by

0 ×1020 (radial direction × circumferential direction) structured 

rid cells. The CFL number is 0.5. 

Fig. 8 shows the results of density obtained by Roe’s FDS, 

USM+, AUSMPW+, and their new schemes. It can be seen that 

he carbuncle phenomenon exists in the density contours of these 

riginal low diffusion schemes ( Fig. 8 (a), (c), (e)). Compared with 

he results of the corresponding original schemes, the results of 

hose new schemes are greatly improved ( Fig. 8 (b), (d), (f)). In this 

est, the present extra diffusion term can indeed increase the ro- 

ustness of Roe’s FDS, AUSM+ and AUSMPW+. 

.6. Ma ∞ 

= 0 . 8 viscous flow over flat plate 

When trying to enhance the robustness of the low diffu- 

ion schemes, one important principle is that the method should 

ot affect the accuracy of the original schemes in resolving the 

oundary-layer region. As can be seen from the above tests, the 

resent extra diffusion term can enhance the robustness of Roe’s 

DS, AUSM+ and AUSMPW+. In this part, the accuracy of those 

ew schemes which are obtained by adding the extra diffusion 

n Eq. (5) is examined on the Ma ∞ 

= 0 . 8 laminar flow over a flat

late. 

In this test case, the computational domain is x ∈ [ −0 . 25 , 1] ×
 ∈ [0 , 0 . 25] . On the bottom boundary, the no-slip and adiabatic

oundary conditions are implemented in the region of x ∈ [0 , 1] , 

hile the other region is symmetric boundary conditions. The 

ree stream parameters are Ma ∞ 

= 0 . 8 , T ∞ 

= 1 /γ , ρ∞ 

= 1 . 0 , P r =
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Fig. 7. Density contours of the odd-even problem. 
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Fig. 8. Density contours of the Ma 20 inviscid flow. (a) Roe, (b) Roe_NEW, (c) 

AUSM+, (d) AUSM+_NEW, (e) AUSMPW+, (f) AUSMPW+_NEW. 
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 . 0 , γ = 1 . 4 . The Reynolds number Re ∞ 

= 5 . 0 × 10 4 . The viscosity

s set to meet the condition of ρμ = ρ∞ 

μ∞ 

. 350 × 180 grid points 

re used in the simulation. The minimum grid size of �y near 

he wall is 2 . 5 × 10 −4 . The CFL number is set to 0.5. In this sim-

lation and the following case of viscous flow, the numerical re- 

ults are obtained by using the second-order centered scheme for 

he viscous fluxes, the third-order MUSCL scheme with minmod 

imiter [9] for the inviscid fluxes, and the third-order Runge-Kutta 

cheme for time-integration. 

Fig. 9 shows the theoretical distributions of velocity and tem- 

erature and the distributions obtained by the different numerical 

chemes at x = 0 . 8 . In the figure, η is the dimensionless coordinate

ith Illingworth transform [37] . The analytical solution of temper- 

ture profile for compressible flow over flat plate is given by White 
9 
nd Corfield [37] 

T 

T e 
= 1 + 

γ − 1 

2 

Ma e 

(
1 − u 

2 

U 

2 
e 

)
(23) 

ere, T e , U e , Ma e are the temperature, velocity, and Mach number 

t the outer edge, respectively. It can be observed from the fig- 

re that the results of the new schemes and the ones of the orig- 

nal schemes are matched very well. The accuracy of the original 

chemes on resolving the boundary-layer is not contaminated by 

he extra term. 

.7. Ma ∞ 

= 6 . 47 viscous flow over a cylinder 

Here, the viscous hypersonic flow over a cylinder is tested. The 

adius of the cylinder is 38.1mm. The free stream conditions are 

a ∞ 

= 6 . 47 , T ∞ 

= 241 . 52 K , P ∞ 

= 648 . 13 Pa . The wall temperature

s 294 . 4 K . In this simulation, a structured mesh with 100 ×60 (ra-

ial direction × circumferential direction) nodes is used with the 

FL number is about 0.3. 
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Fig. 9. Profiles of velocity and temperature at x = 0 . 8 . 
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The wall heat fluxes and density contours are shown in Figs. 10 

nd 11 , respectively. From Fig. 10 , it can be observed that the wall

eat fluxes obtained by those schemes are very close except for the 

esults of Roe’s FDS and van Leer FVS, which are obviously not cor- 

ect. Fig. 11 (a) shows the density contours obtained by Roe’s FDS. 

t is very clear that this solution suffers from the carbuncle phe- 

omenon. Because of this carbuncle failing, the wall heat fluxes 

redicted by Roe’s FDS have a maximum deviation of 32.9% with 
10 
he results of AUSMPW+, while the maximum deviation between 

he results of AUSMPW+ and Roe _ NEW is 0.9%. Because of ex- 

ess numerical diffusion, the wall heat fluxes obtained by van Leer 

VS are very far from those of the low diffusion schemes (AUSM+, 

USMPW+). From this test case, it can be found that the extra term 

an enhance the robustness of low diffusion schemes without los- 

ng accuracy in the prediction of aerodynamic heating. 
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Fig. 10. The heat flux distributions on the solid wall. 

Fig. 11. Density contours of the Ma 6.47 viscous flow. (a) Roe, (b) Roe_NEW, (c) 

AUSM+, (d) AUSM+_NEW, (e) AUSMPW+, (f) AUSMPW+_NEW. 
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11 
. Conclusions 

For enhancing the robustness of low diffusion schemes, a sim- 

le method is proposed in this paper. The idea of this method is to 

ntroduce an appropriate extra diffusion term into the schemes of 

alculating the inviscid fluxes of Euler/N-S equations. The appro- 

riate extra diffusion is designed to meet the requirement of in- 

reasing the robustness of the low diffusion schemes without los- 

ng accuracy in the prediction of aerodynamic heating. The typical 

umerical tests show that using this method will not influence the 

apability of those original schemes (Roe, AUSM+, AUSMPW+) on 

apturing the discontinuities. On the other hand, this method can 

ndeed enhance those schemes’ robustness of capturing the shock. 

he viscous flow tests show that the accuracy of the low diffusion 

chemes on resolving the boundary layer is not significantly influ- 

nced by the present extra term. 

The present method has been implemented in the context of air 

ith a perfect gas equation of state (EOS). For the hypersonic flow 

ast a re-entry vehicle, a real gas usually has to be considered. The 

xtension of the present method on the complex EOS needs to be 

ade in further study. 
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