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A B S T R A C T   

Realizing accurate measurement for thermal contact conductance (TCC) is difficult and needs many additional 
measurements. In this paper, we design a three-layer back propagation artificial neural network (ANN) model to 
retrieve TCC of two contact solid specimens. The model can retrieve TCC only according to the measured 
temperatures and loading pressures, and the effects of loading pressure, temperature and surface roughness on 
TCC are considered. Besides, thermal conductivity, heat flux and the parameter of the TCC empirical fitting 
formula can be obtained simultaneously. The retrieved results are validated by experimental values. The results 
show that for two contact pairs with different surface roughness, the retrieved parameters of TCC empirical 
fitting formula are clear reasonable and can be explained conceptually compared with the published studies.   

1. Introduction 

All seemingly smooth surfaces are actually rough, which can result in 
an imperfect and discrete contact when two solid surfaces contact each 
other. Thus, a temperature difference will occur at the interface when 
heat flows through the interface, and such a phenomenon is entitled as 
thermal contact resistance (TCR). The reciprocal of TCR is thermal 
contact conductance (TCC). TCC is defined in the equation h = q/ΔT, 
where q is the heat flux through the interface and ΔT is the temperature 
difference at the interface. 

TCC can be a crucial influencing factor in the process of heat transfer 
between two solid surfaces and has a remarkable effect on accurate 
thermal management in many engineering applications. For example, it 
can affect the performance of temperature protection system (TPS) of 
the hyper sonic vehicles [1]. In addition, TCR accounts for more than 
50% of the total thermal resistance in press-pack insulated gate bipolar 
transistor (PP-IGBT) device, thus, it can affect the heat dissipation of the 
device and lead to a high junction temperature [2]. Besides, the fields of 
superconducting [3], cryogenic [4], fuel cell [5], fin-tube exchangers [6] 
should also consider the effect of TCC on the performance of heat 
dissipation. 

TCC can be influenced by surface topography [7], loading pressure 
[8], temperature [9], the medium trapped in the interface gap [10,11], 

etc., so it is difficult to obtain a universally valid theory to determine 
TCC. Although the analytical studies on TCC have been conducted for a 
long time [12,13], some bottlenecks haven't been broken yet and further 
studies in rough surface characterization and the asperity deformation 
of the interface are still necessary. Nowadays, researchers tend to use 
numerical simulations and experimental methods to determine TCC of 
the specific materials, besides, using machine learning method to 
retrieve TCC is a new approach in recent years. 

In numerical simulation for TCC, the reconstruction of the rough 
surface is one of the main difficulties, thus we can divide the numerical 
simulation for TCC into two main categories according to the published 
studies. One uses assumptive functions to generate rough surfaces 
[14–17]. Rather than using assumptive functions, the other uses high- 
resolution microscope to measure the surface topography of the speci-
mens, and the measured data are used to regenerate the rough surfaces 
[18–20]. Generally, the model reconstructed from the measurement 
data is more accurate than the model based on the assumptive rough 
surfaces [21]. 

In terms of experimental methods, based on the ASTM E1225–13 
standard [22], one dimensional steady-state heat flux method is the 
most conventional measurement method for TCC. For this experimental 
setup, after obtaining the temperature distribution of the specimens, the 
extrapolation method [23] and the linear fitting method [9] are two 
main methods to calculate TCC. However, the first method needs to 
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measure the thermal conductivity of the specimens before the temper-
ature distribution measurement of the specimens. The second method 
needs to use additional heat flux meter bars; besides, the thermal con-
ductivity of the specimens should be nearly constant within a not large 
variation range of temperature. In addition, it should be noted that for 
the same experimental data, the results derived from these two methods 
may be obviously different, because this experimental setup is an indi-
rect measurement method, and the measurement error will be enlarged 
step by step when calculating the temperature difference and heat flux of 
the interface [24–26]. 

Actually, solving TCC is an inverse problem of heat transfer, hence, 
researchers try to apply artificial neural network (ANN) model to solve 
TCC in recent years. ANN model is an effective method for finding the 
relations between dependent and independent variables for which 
mathematical formulation is unavailable. Goudarzi [27] studied the TCC 
in the exhaust valve of internal combustion engine with an ANN model, 
in their research, the training data was obtained by solving the inverse 
problem, and the simulated temperature was used, furthermore, thermal 
conductivities of the materials should be known and was a constant. 
Zhan et al. [28] collected the published 876 experimental data of ther-
mal boundary resistance (TBR) to train the model, however, the 
collected experimental data should be carefully selected because those 
data were obtained based on different descriptors, such as thermal 
conductivity, Debye temperature, speed of sound, elastic modulus, and 
bulk modulus, etc. Yang et al. [29] used the numerical results by clas-
sical molecular dynamics (MD) to train the ANN model and predict the 

TBR between graphene and hexagonal boron-nitride, nevertheless, MD 
is time-consuming and needs much computational resource. On the 
other hand, the methods published in [28,29] are difficult to extend to 
macroscopic TCC prediction. 

In this paper, we try to fill this gap by using an artificial neural 
network (ANN) model to retrieve TCC directly. The model doesn't need 
to measure the thermal conductivity of the specimens or use heat flux 
meter bars, on the contrary, the thermal conductivity and heat flux of 
the specimens can also be retrieved simultaneously only according to the 
measured temperatures and pressures. The training data can be obtained 
by a theoretical analysis, and the model is time-saving and whole 
retrieving process just takes several minutes in a personal computer. 
Moreover, the model is also useful for contact pairs with different sur-
face roughness. 

2. Temperature and pressure measurement 

2.1. Experimental apparatus 

The measurement schematic for TCC is shown in Fig.1. TCC is 
derived from the measured temperature distribution of the specimens. 
Generally, temperatures are measured by thermocouples embedded in 
the specimens, while IR camera can be also used to measure the tem-
perature difference of the interface [30]. In this study, we use thermo-
couples to measure temperature distributions. 

The measurement apparatus in this study are shown in Fig.2. It 
should be emphasized that the surface topography of the specimens 
should be measured firstly before the TCC measurement. The micro-
scope shown in Fig.2 (a) can measure surface topography by optical 
interference principle. It can accurately measure many parameters of 
surface topography of and we finally select the conventional average 
surface roughness, denoted by Ra, to represent the surface roughness. 
The temperature distribution can be measured by a temperature distri-
bution measurement system shown in Fig.2 (b). The system can record 
loading pressures and steady-state temperatures of two specimens. The 
more detailed information about these two apparatus can be found in 
[9]. 

2.2. Specimens 

Fig.3 shows the specimens. The sizes of all specimens are identical, 
and each cylindrical specimen is 48 mm in diameter and 52 mm in 
height. Each specimen has 12 holes to mount thermocouples, and every 

Nomenclature 

c1,c2, c3 Parameter of empirical fitting formula of TCC − −

E Elastic modulus (GPa) 
h Thermal contact conductance (W⋅K− 1⋅m− 2) 
P Loading pressure (MPa) 
q Heat flux (W⋅m− 2) 
R Thermal contact resistance (K⋅m2⋅W− 1) 
Ra Average surface roughness (μm) 
T Temperature (◦C) 
Tave Interface average temperature (◦C) 
x, y, z Cartesian coordinates (m) 
λ Thermal conductivity (W⋅m− 1⋅K− 1)  

Fig. 1. The schematic of measurement for TCC.  
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four holes are in the same height and uniformly distributed in the pe-
ripheral direction. Every hole is 2 mm in diameter and 12 mm in depth. 
The sheathed thermocouples with 2 mm in diameter are inserted in the 
holes to measure the temperatures. 

The materials of Pair A (Fig.3(a)) and Pair B (Fig.3(b)) are both TC4 
titanium alloy, and the only difference is their surface roughness of two 
contact surfaces. The two surfaces brought into contact of Pair A are 
processed by turning and the two surfaces brought into contact of Pair B 
are processed by sandblasting method. The detailed surface roughness 
brought into contact measured by the microscope (Fig.2 (a)) is listed in 
Table 1. 

The next step is to measure the temperature distribution of two pairs 
under different loading pressures and temperatures, which can be 
finished in the temperature distribution measurement system (Fig.2 (b)). 
The experimental cases are listed in Table 2. The measurement process 
can be described as follows. Firstly, fix the pressure at 4.65 MPa, and set 
the heating temperature to 400 ◦C，when finish the steady-state tem-
perature record at 400 ◦C, then increase the temperature to 500 ◦C and 
record the steady-state temperature at 500 ◦C, until finish the mea-
surement under 700 ◦C. Secondly, increase the pressure to 7.78 MPa, 
and record the steady-state temperature at different heating tempera-
tures. Lastly, finish the steady-state temperature measurement at 12.08 
MPa. In this study, the criteria to judge steady state is that temperature 

change is less than 0.3 ◦C with 30 min. 
Rather than using the method mentioned in [9,23] to obtain TCC, in 

this paper, we design an ANN model to retrieve TCC, thermal conduc-
tivity and heat flux of the specimens. Although the material of the 
specimens is TC4 titanium alloy and its thermal conductivity can be 
found in published data, we still assume the thermal conductivity are 
unknown in the retrieving process, thus, we can use TC4 titanium alloy 
to validate our model. The detailed process is described in Section 3. 

3. ANN method 

3.1. A brief introduction of ANN 

In the conventional programming, we tell a computer to break a big 
problem up into many small and precisely defined tasks that can be 
easily be performed. By contrast, in ANN we don't tell the computer how 
to solve our problem. Instead, it learns from training data and figures out 
its own solution to the problem [31]. 

A conventional ANN consists of an input layer, one or more hidden 
layers and an output layer, and each layer has one or more neurons. If 
the output from one layer is used as input to the next layer, such net-
works are called feedforward neural networks. Each neuron has a weight 
and bias, and the data are transferred by the activation function to next 
neuron. Training algorithm is one of the key parts in an ANN, nowadays, 
the error backpropagation (BP) algorithm is often used to train ANN. 
Generally, an ANN with 1 hidden layer can solve most of complicated 
non-linear problems. 

3.2. Theoretical analysis 

In this part, we want to discuss how we apply an ANN model to 
retrieve TCC between two contact solids. As Fig.4 (a) shows, two cy-
lindrical solid specimens contact each other. 

Fig. 2. The measurement apparatus.  

Fig. 3. The specimens.  

Table 1 
Surface roughness of two contact pairs.  

Contact pair Surface roughness (Ra) 

Pair A 2.85 μm / 3.13 μm 
Pair B 24.46 μm / 13.36 μm  

Table 2 
Experimental cases.  

Pressure 4.65 MPa 7.78 MPa 12.08 MPa 

Heating Temperature 400 ◦C 400 ◦C 400 ◦C 
500 ◦C 500 ◦C 500 ◦C 
600 ◦C 600 ◦C 600 ◦C 
700 ◦C 700 ◦C 700 ◦C  
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We select the interior region of the red rectangle in Fig.4 (a) and 
show it in Fig.4 (b). In Fig.4 (b), let T1 be boundary temperature; let 
thermal contact conductance be h, axial heat flux be q. With three 
boundary conditions (T1, h, q), the 1D heat conduction in Fig.4 (b) has a 
unique solution, and the solutions are shown in Eqs. (1)–(2), 

T (1) = −
q
λ1

x+ T1 (1)  

T (2) = −
q
λ2

x+ T1 + q
(

d1

λ2
−

1
h
−

d1

λ1

)

(2) 

Where T (1) represents the temperature solution of specimen 1, and T 
(2) is the temperature solution of specimen 2. λ1 and λ2 are thermal 
conductivities of specimen 1 and 2, respectively. Thus, T2, T3 and Td can 
be calculated with Eqs. (3)–(5), 

T2 = −
q
λ1

x1 + T1 (3)  

T3 = −
q
λ1

x2 + T1 (4)  

Td = −
q
λ1

d1 +T1 (5) 

In a similar way, Tu, T4, T5 and T6 can be calculated with Eqs. (6)–(9), 

Tu = −
q
λ1

d1 + T1 −
q
h

(6)  

T4 = −
q
λ2

x3 + T1 + q
(

d1

λ2
−

1
h
−

d1

λ1

)

(7)  

T5 = −
q
λ2

x4 + T1 + q
(

d1

λ2
−

1
h
−

d1

λ1

)

(8)  

T6 = −
q
λ2

d2 + T1 − q
(

1
h
+

d1

λ1

)

(9) 

Where Td and Tu are temperatures of two contact surfaces. Note that 

λ1 and λ2 are average thermal conductivity of specimen 1 and 2, 
respectively. Because d1 and d2 are both 40 mm, using average thermal 
conductivity to calculate temperature distribution is reasonable within 
d1 and d2. 

3.3. The treatment for h 

TCC can be influenced by temperature and loading pressure, thus, h 
should also consider the effects of temperature and loading pressure. In 
many previous studies, researchers often use an empirical fitting cor-
relation to express TCC, as Eq. (10) shows, 

h = c1

(
Tave

Tr

)c2
(

P
Eeff

)c3

(10) 

Where P is the loading pressure. Tr is 298 K. Tave is the average 
temperature of two contact surfaces, namely Tave = 0.5 * (Td + Tu). Eeff is 
the effective elastic modulus of two contact bodies and can be calculated 
with Eq. (11), 

1
Eeff

=
1 − ν2

1

E1
+

1 − ν2
2

E2
(11) 

Where E1 and E2 are elastic modulus of specimen 1 and 2, respec-
tively. ν1 and ν2 are Poisson's ratio of specimen 1 and 2, respectively. 
According to [19,32], TCC obtained from Eq. (10) is satisfactory within 
a large temperature and pressure ranges, thus we also use Eq. (10) to 
calculate TCC. On the other hand, the parameters (c1, c2, c3) in Eq. (10) 
considers the effects of temperature and pressure on TCC. 

3.4. Training data 

Generally, training data of ANN is from experiments, however, nu-
merical simulation results can also be training data in some research 
[29,33]. In this paper, training data is generated using Eqs. (3)–(10), and 
the detailed descriptions are as follows, 

Fig. 4. Two contact specimens and its schematic.  

X.-J. Ren et al.                                                                                                                                                                                                                                  



International Communications in Heat and Mass Transfer 136 (2022) 106182

5

(1) Let q, T1, λ1, λ2, c1, c2, c3, P be independent variables, and h, T2, 
T3, Td, Tu, T4, T5, T6 be dependent variables.  

(2) According to experimental apparatus and material type, give a 
reasonable value range for each independent variable. The value 
ranges of all independent variables are listed in Table 3. Note that 
all the value ranges are reasonable estimation ranges and include 
all possible experimental conditions.  

(3) Assign each independent variable a value from its value range, 
and then use the independent variable to calculate dependent 
variables according to Eqs. (3)–(10).  

(4) Repeat step (3) many times, thus we can obtain enough training 
data, and these data is also the solutions of Eqs. (1)–(2). 

It should be mentioned that the random combination of c1, c2, c3, P 
may yield awfully unreasonable h according to Eq. (10), and such data 
are noisy data, so we let h be in the range of (100,10,000) (W⋅K− 1⋅m− 2). 
According to the published papers, this range contains TCC values of 
most of engineering materials with different surface roughness. Besides, 
T1 and q should be positively related, and λ1 is always larger than λ2 
because average temperature of specimen 1 is larger than that of spec-
imen 2. The above rules can be realized by adding additional conditions 
in the code. 

It should be noted that experimental data have some uncertainty. In 
this paper, we use experimental data to retrieve TCC, so the uncertainty 
of the experimental data should be considered. For a designed ANN, the 
common method to enhance its performance or generalization ability is 
to add noise to training data. In order to make the model consider the 
uncertainty of actual measurement data, the training data are added by 
some random noise. Here the random noise can be treated as the un-
certainty of the measurement data. We use T' = T ± r (− 3σ < r < 3σ) to 
add noise to training data. Here r is generated by sampling random 
numbers from the defined Gaussian distribution with mean μ as zero and 
standard deviation σ equal to the temperature measurement error 0.75% 
T, because the main uncertainty comes from the temperature measure-
ment, and temperature measurement error of thermocouples is ±0.75% 
T in our experimental system. Finally, we obtain 24,048 sets of training 
data and 6012 sets of test data. Besides, we use the training data without 
noise and with noise to train the ANN, and we find that the retrieved 
results of the ANN with noise have a better agreement with the exper-
imental results. 

It should also be mentioned that the independent variables can also 
be assumed to other ranges different from Table 3, that is to say, the 
method proposed in this paper can also be used to retrieve TCC of other 
materials. 

3.5. The architecture of the designed ANN 

The schematic of the designed ANN is shown in Fig.5. The ANN has 1 
hidden layer, 1 input layer and 1 output layer. The neuron numbers of 
the input layer and the output layer are 7 and 6, respectively, however, 
the neuron number of the hidden layer needs to be determined in the 
training process. 

It can be seen from Fig.5 that we select P, T1, T2, T3, T4, T5, T6 as input 
data, and q, λ1, λ2, c1, c2, c3 as output data. It is because when we finish 
the training of the ANN model, we can easily use the measured P, T1, T2, 
T3, T4, T5, T6 from experiment as inputs, and the outputs are q, λ1, λ2, c1, 
c2, c3. Thus, we can simultaneously obtain TCC, heat flux, thermal 
conductivity of the specimens according to the measured loading pres-
sures and temperatures. 

We use Mini-Batch Gradient Descent Algorithm to train the ANN, and 
use Mean Square Error (MSE) to be loss function, as shown in Eq. (12), 

MSE =
1
2n

∑n

i=1
(yi − ti)

2 (12) 

Where n is the number of output neuron. yi is the output value, and ti 
is the target value. When MSE is less than a small value, the ANN finishes 
training. Furthermore, we use L2 Regularization technique to reduce the 
effect of overfitting and apply Min-max Normalization Function to process 
input data, as shown in Eq. (13), 

X =
x − xmin

xmax − xmin
(13) 

Where xmax and xmin are the maximum and minimum of character-
istic value. By Eq. (13), the characteristic value can be transformed to 
(0,1), which can speed up the training process. 

Table 3 
The value range of independent variables.  

q T1 λ1, λ2 c1 c2 c3 P 

[6000,76,000] [200,800] [6,15] [3000,100,000] [0.1,3] [0.1,2] [0.5,13]  

Fig. 5. The architecture of the designed ANN.  

Fig. 6. The performance of ANN with different hidden neurons.  
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3.6. The number of hidden neurons 

Fig.6 shows the performance of the designed ANN with different 
hidden neurons. It can be seen that the ANN with 20 hidden neurons 
performs better than others. Therefore, an ANN with 20 hidden neurons 
is chosen for all next calculations. 

Fig.7 shows the training process and the training parameters of the 
ANN. It can be seen that MSE values converge within 2000 epoch 
training, and overfitting doesn't occur. The training is timesaving and 
can finish in a PC within 1 h using Python code. 

When we finish the ANN training, we can use the experimental P, T1, 
T2, T3, T4, T5, T6 as input to query the corresponding outputs q, λ1, λ2, c1, 
c2, c3, and the flowchart is shown in Fig.8. Thus, the designed ANN can 
retrieve q, λ1, λ2, c1, c2, c3 simultaneously only based on the experi-
mental P, T1, T2, T3, T4, T5, T6. 

4. Results and discussions 

4.1. Thermal conductivity λ 

We use TC4 titanium alloy to validate our model, and its experi-
mental thermal conductivities can be found in the published papers and 
are used to validate our retrieved results. Table 4 and Table 5 list the 
retrieved and experimental thermal conductivities of Pair A and Pair B, 
respectively. The subscripts “ANN” and “exp” mean the retrieved value 
by ANN and experimental value, respectively. Δ is the deviation be-
tween the retrieved value and the experimental value. It can be seen 
from Tables 4 and 5 that the deviations are all within 14%, and de-
viations of 95% cases are less than 10%, besides, the deviations of 66.7% 
case are less than 5%. 

ASTM E1225–13 pointed out that the deviation should be less than 
18% for thermal conductivity measurement in different labs. Although 
retrieved thermal conductivity is obtained by ANN rather than experi-
ments, it can also say that our results are in accordance with the stan-
dard. Guo et al. [34] used conjugate gradient method to estimate the 
thermal conductivity and TCC of one layer in a multilayer composite 
structure. The results of a heat-shielding experiment showed no more 
than a 2.4% deviation for the estimated thermal conductivity. However, 
their research neglected TCC between other interfaces and thermal 
conductivity of other layers were known. Considering the difference in 
experimental apparatus, their research can also be a support for our 
research. 

4.2. Heat flux q 

Tables 6 and 7 list the retrieved heat flux qANN and the experimental 
heat flux qexp, and qexp is calculated with Fourier's law of heat conduc-
tion. It can be seen that the deviations at 400 ◦C are relatively larger than 
that at other heating temperatures, which may be caused by the system 
error at 400 ◦C. The retrieved heat flux at other heating temperatures 
(500 ◦C, 600 ◦C, 700 ◦C) agrees well with the experimental heat flux, 
and the maximum deviation is 5.4%, which also shows that the ANN 
model performs well. 

4.3. c1, c2, c3 

Table 8 lists the retrieved c1, c2, c3 for determining TCC h. It can be 
seen that c1 of Pair A is slightly different from that of Pair B, and we think 
it is due to numerical error during normalization process, thus, we 
conclude that c1 is the same for the same material pairs even though 
their surface roughness is different. In addition, c2 is 1.55 for both Pair A 
and B. It is reasonable because c2 is the exponent of temperature term in 
Eq. (10), and it can be concluded that the effect of temperature on TCC of 
the same material pairs should be the same even though their surface 
roughness is different. 

It can also be seen from Table 8 that c3 is different for two contact 
pairs. It is well known to us that surface roughness can strongly affect 
TCC, because different surface roughness can contribute to different 
actual contact area. It can be inferred when other conditions keep the 
same, if we apply the same pressure to two contact pairs with different 
surface roughness, TCC of different pairs must be different. In our study, 
c3 is the exponent of pressure term in Eq. (10), and the results for two 
contact pairs agree well with the inference. Besides, the term P/Eeff in 
Eq. (10) is always less than 1.0 in most cases, hence, the bigger the 
exponent of P/Eeff in Eq. (10), the smaller the TCC. In our study, the 
surface roughness of Pair A is less than that of Pair B, so it can be inferred 
that TCC of Pair A is larger than that of Pair B when other conditions 
keep the same, and the retrieved results are in accordance well with the 
inference. 

Dou et al. [35] studied the effect of roughness on TCC of stainless 
steel and obtained an empirical fitting correlation similar with Eq.(10). 
In their results, c1 and c2 are largely different for stainless steel pairs with 
different surface roughness. However, in our study, c1 and c2 are the 
same for the contact pairs with different surface roughness. According to 
our results, we think c1 is related to material type; c2 is related to tem-
perature; c3 is related to pressure and surface roughness. Such a 
conclusion is clear, reasonable and easier to understand. 

Fig. 7. Training process (Learning rate = 0.15, Epoch = 2000, Mini-Batch =
10, Regularization parameter = 1.0). 

Fig. 8. The flowchart for retrieving TCC.  
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4.4. TCC h 

Table 9 and Table 10 list the retrieved and experimental TCC of Pair 
A and Pair B, respectively. It can be seen that the deviation between hANN 
and hexp fluctuates with average interface temperatures and pressures. 
Specifically, the maximum deviation is 42.1% and minimum deviation is 
1.2%. 

However, it should be emphasized that hexp is an indirect measure-
ment value, so measurement errors can't be avoided. As stated in Section 
1, extrapolation method and linear fitting method may yield 

Table 4 
The retrieved and experimental thermal conductivities of Pair A.  

4.65 MPa 7.78 MPa 12.08 MPa 

T/◦C λANN λexp Δ T/◦C λANN λexp Δ T/◦C λANN λexp Δ 

174.7 7.5 8.3 − 9.6% 175.3 7.4 8.3 − 10.8% 172.7 7.2 8.3 − 13.3% 
217.5 8.9 8.8 1.1% 218.4 8.7 8.8 − 1.1% 217.5 8.6 8.8 − 2.3% 
263.2 9.8 9.2 6.5% 263.0 9.6 9.2 4.3% 260.5 9.3 9.2 1.1% 
306.4 10.4 9.7 7.2% 306.9 10.1 9.7 4.1% 305.5 9.9 9.7 2.1% 
377.1 10.5 10.3 1.9% 383.0 10.5 10.4 1.0% 386.5 10.3 10.4 − 1.0% 
453.4 11.8 11.1 6.3% 458.6 11.7 11.2 4.5% 461.1 11.5 11.2 2.7% 
525.2 12.7 11.8 7.6% 531.9 12.6 11.9 5.9% 536.2 12.4 11.9 4.2%  

Table 5 
The retrieved and experimental thermal conductivities of Pair B.  

T/◦C 4.65 MPa 7.78 MPa 12.08 MPa 

λANN λexp Δ λANN λexp Δ λANN λexp Δ 

157.8 7.0 7.5 − 6.7% 7.0 7.5 − 6.7% 6.9 7.5 − 8.0% 
197.4 7.9 7.7 2.6% 7.8 7.7 1.3% 7.8 7.7 1.3% 
238.1 8.4 7.9 6.3% 8.3 7.9 5.1% 8.2 7.9 3.8% 
279.8 8.8 8.2 7.3% 8.6 8.2 4.9% 8.3 8.1 2.5% 
341.0 9.6 10.0 − 4.0% 9.6 10.0 − 4.0% 9.6 10.0 − 4.0% 
410.1 10.9 10.7 1.9% 10.8 10.7 0.9% 10.6 10.7 − 0.9% 
478.0 11.8 11.4 3.5% 11.6 11.4 1.8% 11.5 11.4 0.9%  

Table 6 
The retrieved and experimental heat flux of Pair A.  

4.65 MPa 7.78 MPa 12.08 MPa 

Heating Temperature qANN qexp Δ qANN qexp Δ qANN qexp Δ 

400 ◦C 16,999.5 19,492.8 − 12.8% 17,597.0 20,459.2 − 14.0% 17,550.0 21,096.3 − 16.8% 
500 ◦C 25,874.9 26,313.8 − 1.7% 26,593.0 27,583.1 − 3.6% 26,922.1 28,468.4 − 5.4% 
600 ◦C 34,375.6 33,753.6 1.8% 34,987.9 35,177.8 − 0.5% 35,205.0 36,281.9 − 3.0% 
700 ◦C 42,270.8 41,504.7 1.8% 43,045.7 43,296.1 − 0.6% 43,479.2 44,787.7 − 2.9%  

Table 7 
The retrieved and experimental heat flux of Pair B.  

4.65 MPa 7.78 MPa 12.08 MPa 

Heating Temperature qANN qexp Δ qANN qexp Δ qANN qexp Δ 

400 ◦C 19,573.3 22,864.0 − 12.8% 20,272.6 23,681.3 − 13.2% 20,390.6 24,088.2 − 14.6% 
500 ◦C 29,387.8 30,563.8 − 3.0% 30,031.3 31,615.1 − 4.3% 30,237.4 32,130.6 − 5.4% 
600 ◦C 38,893.2 38,867.3 − 0.2% 39,367.0 40,002.5 − 1.8% 39,453.4 40,725.5 − 3.6% 
700 ◦C 48,297.8 47,692.9 0.4% 48,824.7 49,084.5 − 1.4% 49,246.5 50,482.1 − 3.8%  

Table 8 
The retrieved c1, c2, c3.  

Contact pair c1/W⋅K− 1⋅m− 2 c2 c3 

Pair A 52,489.6 1.55 0.37 
Pair B 51,635.4 1.55 0.44  

Table 9 
The retrieved and experimental TCC of Pair A.  

4.65 MPa 7.78 MPa 12.08 MPa 

Tave/◦C hANN hexp Δ Tave/◦C hANN hexp Δ Tave/◦C hANN hexp Δ 

216.7 3573.4 3215.4 11.1% 218.9 4355.2 3472.2 25.4% 217.4 5099.6 3787.9 34.6% 
270.5 4245.2 3968.3 7.0% 273.5 5183.0 4081.6 27.0% 274.1 6110.6 4651.2 31.4% 
327.1 5007.1 4717.0 6.1% 329.0 6090.2 4975.1 22.4% 328.2 7151.3 5814.0 23.0% 
380.5 5778.9 5555.6 4.0% 383.6 7047.8 5780.3 21.9% 384.3 8308.8 6896.6 20.5%  
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significantly different results for the same experimental data. The 
detailed uncertainty analysis about our measurement system can be 
found in [9]. According to [9], the relative experimental uncertainty for 
Pair A is 14.1%–19.0%, and for Pair B is 5.8%–7.3%. Besides, the rela-
tive experimental uncertainty increases with an increase in loading 
pressure, because a higher loading pressure will reduce the thermal 
contact resistance, thus the relative uncertainty will increase. Hence, 
hexp calculated by linear fitting method in air condition is only a rela-
tively reliable value, and we think it may be one of the causes of the large 
deviations in some cases. 

On the other hand, whether numerical model or ANN model, both of 
them are constructed based on some assumptions, which is also another 
cause of the large deviations in some cases. Besides, it should be noted 
that the TCC is the data-reduction result related to thermal conductivity, 
temperature and heat flux, so the uncertainty of TCC will be enlarged 
step by step in the data-reduction process. In our retrieved results, the 
deviations of the thermal conductivity and heat flux are obviously 
smaller than that of TCC. Thus, the accumulation of uncertainties may 
be another reason for some relatively large uncertainties in some 
retrieved TCC. 

In a word, although deviations in some cases are relatively large, we 
still consider that our method is believable. The reasons are as follows:  

(1) Firstly, the retrieved thermal conductivities and heat flux agree 
well with the experimental values.  

(2) Secondly, the deviations of 50% cases are less than 20% for the 
retrieved TCC, and such a result is completely acceptable for TCC 
prediction.  

(3) Thirdly, the retrieved c1, c2 and c3 are reasonable and can be 
explained conceptually. 

5. Conclusions 

In this paper, we design an artificial neural network (ANN) model to 
retrieve thermal contact conductance (TCC) only based on the measured 
temperatures and loading pressures, besides, thermal conductivity and 
heat flux of the specimens can be retrieved simultaneously. The method 
can omit the measurement of heat flux and thermal conductivities of the 
specimens, and the whole computation process can be finished within 1 
h. The major conclusions are as follows:  

(1) The retrieved thermal conductivities and heat flux by ANN model 
agree well with the experimental values. The deviations between 
the retrieved and experimental TCC of 50% cases are less than 
20%.  

(2) The ANN model can consider the effects of temperature, loading 
pressure and surface roughness on TCC. If we use h =

c1

(
Tave
Tr

)c2
(

P
Eeff

)c3
to be the empirical fitting correlation of TCC, the 

retrieved c1 and c2 are the same for the same material pairs even 
though the surface roughness is different, and c3 is different for 
contact pairs with different surface roughness.  

(3) According to our results, it is believed that c1 is related to material 
type; c2 is related to temperature; c3 is related to pressure and 
surface roughness. Such a conclusion is more clear, reasonable 
and easier to understand. 
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