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H I G H L I G H T S  

• A novel 3D multi-physics field digital twin model for PEMFCs is proposed. 
• The computational fluid dynamic technique is integrated in the digital twin model. 
• The model is demonstrated within twenty randomly selected working conditions. 
• The proposed model can predict PEMFC physics field characteristics in 0.913 s.  
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A B S T R A C T   

In times of the commercialization process of proton exchange membrane fuel cells (PEMFCs), a full knowledge of 
in-situ state in PEMFCs is of critical significance to the in-situ operational process and the evaluation of material 
stage and potential damage. The conventional experimental observation and in-situ prediction models can only 
obtain very limited information while the computational fluid dynamics approach takes too long time to get the 
detailed information. To reach a full knowledge of PEMFC real-time state, a novel 3D multi-physics digital twin 
model for PEMFCs is proposed based on the proper orthogonal decomposition (POD) method. In the model, 
firstly, for one kind of PEMFC, 139 ex-situ snapshots are designed and simulated based on the three-dimensional 
two-phase non-isothermal numerical model with the assumption of liquid pressure continuity in the whole 
membrane electrode assembly. Then the modes of each field in snapshots are extracted by singular value 
decomposition method using Jacobi algorithm. Finally, the coefficients in the POD prediction equation are ob-
tained by using the multivariate adaptive regression splines. The digital twin results of voltage, temperature, 
membrane water content and liquid water saturation fields are exhibited and analyzed. Results suggest that for 
the studied PEMFC, the digital twin technique can capture the global values and the local distribution charac-
teristics of each above physical fields well in 0.913 s. The mean global deviations of the above four fields of 20 
groups of random conditions within wide current density and operational condition ranges are 5.7 %, 1.3 %, 8.9 
% and 12.0 % respectively. Even though the practical results can only be applied for the studied PEMFC, the 
proposed methodology has its general application range.   

1. Introduction 

Nowadays, with the accelerating climate and carbon neutrality 
agenda [1,2] around the world, energy industry is being transformed 
from fossil fuel-dominated structure to renewable and sustainable 
energy-dominated one with an ever-increasing rate. However, the 
intermittency of renewable energies restricts its further popularization 

and application [3,4]. Hydrogen is regarded as an important energy 
storage method hopefully to resolve this issue [4]. As an important 
hydrogen energy utilization equipment, proton exchange membrane 
fuel cell (PEMFC) will be one of the most promising widespread power 
generating devices in the future. Although challenges still exist [5–12], 
very recently, the commercialization of PEMFCs has been developed 
rapidly around the world [13–18]. 

A full knowledge of real-time state in PEMFCs (for instance, flooding 
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[19] and membrane dehydration [20], etc.) is of critical significance to 
the in-situ operational process [21] and the evaluation of lifetime. 
Moreover, proper and timely adjustments of the abnormal states for 
water and thermal managements benefit to a longer mileage and lifetime 
[22]. Due to the complex micron scale structures, the in-situ measure-
ments of complete physical fields in PEMFCs are hardly possible by the 
conventional experimental methods [23]. Therefore, a series of in-situ 
prediction models are proposed, including mechanism model [24–29], 
semi-empirical model [30–36] and experimental data model 
[21,37–42]. The mechanism model and experimental data model are 
established based on mathematical and physical mechanism (repre-
sented by partial differential equations) and data driven model (repre-
sented by machine learning technology), respectively. The semi- 
empirical model seeks balance between them. However, the predicted 
physical quantities in the above models are generally very limited. As 
indicated by Rubio and Agila [21] very recently, in the operation of 
PEMFCs, designing a robust model considering the distribution of water 
in each layers as a function of inlet gas humidity, heat transfer, gas 
diffusion, etc., is an important further research work. 

So far, researchers have proposed lots of conventional computational 
fluid dynamics (CFD) models to numerically predict three-dimensional 
(3D) multi-physics fields (for instance, gas velocity, pressure, concen-
trations of gas species, voltage, liquid water, membrane water content, 
etc.) in PEMFCs [43–58], among which 3D multi-phase non-isothermal 
model is the most comprehensive numerical model [56,57]. In general, 
the conventional CFD simulation for one current density point on a 
polarization curve will take several hours to days even in the investi-
gation of the simplest flow channel model (single straight channel 
model). However, during the practical PEMFC real-time operation, a 
quick online response, as little as several seconds or less, is highly 
required. Therefore, the conventional CFD method can hardly be applied 
directly in in-situ operational process. 

The concept of digital twin is firstly proposed by Professor Grieves in 
2003 and is comprehensively defined by NASA as an aircraft oriented 
[59,60]. Digital twin is extensively considered as a revolutionizing 
technology in the industry [61]. The concept of digital twin covers lots 
of aspects, virtualization-multi-physics modeling, full life cycle man-
agement (from product design to manufacturing stage) and integration 
with other technologies, etc. [60] This paper focuses on the first aspect 
(i.e., visualization-multi-physics modeling) and paved the way for 
further applications, diagnosis, in-situ operations and lifetime pre-
dictions. To the authors’ knowledge, digital twin is firstly introduced 

into PEMFC research by Wang et al. [23] in 2020 with a data-driven 
surrogate model. In their research, 75 random ex-situ solutions are 
simulated previously as a training-set. After training by machine 
learning algorithms, the predictions of multi-physics fields under in-situ 
operational conditions can be very fast and the relative root mean square 
errors of the multi-physics fields for the test-set range from 3.88 % to 
24.80 %. However, although solutions in the training-set are simulated 
by a state-of-the-art three-dimensional numerical model, their training 
models are still applied on limiting two-dimensional planes. Moreover, 
the ranges of the studied operational conditions are limited. Later, 
several researchers focus on digital twins in the aspects of prognostics 
method [62], fault diagnosis [63], the hydrogen powertrain and the 
auxiliary systems [64]. However, due to the difficulty caused by the 
large amount (or order) of data and the complex non-linear coupled 
characteristics, there are few studies on the digital twin in the aspect of 
complete 3D virtualization-multi-physics modeling in PEMFCs. 

The critical points to resolve this issue are how to find the low- 
dimensional space that describes the original physical problem and 
how to establish its reduced-order model in the low-dimensional space. 
Proper orthogonal decomposition (POD) technology is a feasible 
reduced-order model for the fast and accurate predictions of velocity 
and temperature fields in the fluid flow and heat transfer problems [65]. 
POD was firstly introduced into fluid mechanics by Lumley et al. [66] for 
the analysis of coherent structure in turbulent flow. Till now, POD has 
been successfully applied in the dynamical analysis of micro-
electromechanical systems [67,68], the extraction of ocean surface wave 
fields [69], the analysis of satellite and radar observations for the per-
formance enhancement of weather forecast [70], etc. POD is a reduced 
order technology extracting the characteristic functions (called modes) 
from a large number of ex-situ numerical or experimental data. The in- 
situ physical fields can be quickly predicted (generally less than 1 s) 
from the linear combination of the modes. Furthermore, it is interesting 
to note that although POD technology is based on the above linear 
combination of modes, it is also feasible in the analysis of non-linear 
problems [71] (for example, Navier-Stokes equations in fluid me-
chanics). Therefore, POD is a potential solution to deal with the above- 
referred difficulties in the 3D digital twin of PEMFCs. 

In summary, in the researches about PEMFC in-situ experimental 
observations, the observed quantities are very limited. Although the 
computational fluid dynamic approach can obtain 3D multi-physics 
fields in PEMFCs, the simulation time is too long to satisfy the in-situ 
prediction needs. In the literatures about PEMFC multi-physics digital 

Nomenclature 

Symbol 
F Physical field matrix 
J Functional 
J Jacobi matrix 
R Kernel matrix/function 
St Stoichiometric ratio 
U Left single vectors 
V Right single vectors 
b Weight coefficient 
f Analytical or vector expression of physical field 
f Discrete expression of physical field 
J Current density/A⋅m− 2 

l Truncation order 
n Snapshot number 
Δ Truncation error 
Σ Singular value matrix 
Ω Three-dimensional Euclidean space 
δ Kronecker symbol 

θ Jacobi rotation angle/rad 
λ Lagrange multiplier 
σ Single value 
ψ Analytical or vector expression of mode 
ψ Discrete expression of mode 
ψ’ Non-normalization mode 

Abbreviations 
3D Three-dimensional 
BP Bipolar plate 
CCL Cathode catalyst layer 
CFD Computational fluid dynamics 
CGDL Cathode gas diffusion layer 
CH Gas flow channel 
CMPL Cathode micro pore layer 
MEM Proton exchange membrane 
PEMFC Proton exchange membrane fuel cell 
POD Proper orthogonal decomposition 
SVD Singular value decomposition 
UDF User-defined function  
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twin, the training models are applied only on two-dimensional planes. 
To reach a full knowledge of PEMFC real-time state, this paper pertains 
to realize a complete 3D virtualization-multi-physics digital twin for 
PEMFCs (abbreviated as digital twin hereafter this paper) by POD 
technology. In the remainder of this paper, the basic principles and al-
gorithms of the digital twin process are briefly introduced in Section 2 
and the results are exhibited and discussed in Section 3. Finally, some 
conclusions are given in Section 4. 

2. Methodology 

2.1. Brief introduction to POD technology 

The principle of POD is similar to Fourier decomposition method 
better known by researchers. POD is a reduced-order technique which 
expands physical fields as a linear equation of the modes extracted from 
a series of beforehand numerical or experimental results, called snap-
shots, as is shown in Eq. (1). 

f k(Ω) =
∑

j
ψ j(Ω)bj,k (1)  

where Ω represents the 3D Euclidean space, fk is the analytical expres-
sion (or vector) of one physical field in the kth snapshot, ψ j is the 
normalization modes defined in the Euclidean space, bj,k is the weight 
coefficient of the jth mode for the studied physical field in the kth 

snapshot. An example of the above analytical expression of one physical 
field or one mode is f(Ω) = xyz2, where x, y and z are the rectangular 
Cartesian axes. 

In order to guarantee the centralization of the information for the 
convenience of further order reduction, the selection of modes ψj 
require: 
{

max:
〈
|(f k,ψ)|

2 〉

s.t. ‖ψ‖ = 1
(2)  

where (⋅, ⋅), 〈⋅〉 and ‖⋅‖ represent the inner product, the mean value and 
the L2 norm respectively. Eq. (2) is a variational problem of functional 
with constraint. According to Lagrange multiplier method, Eq. (2) can be 
transformed into a variational problem without constraint, as shown in 
Eq. (3) [72]. 

max:J[ψ] =
〈
|(f k,ψ) |

2 〉
− λ
(
‖ψ‖

2
− 1

)
(3)  

where λ is the Lagrange multiplier. According to the variational prin-
ciple, ψ requires 

δ
δψ J[ψ] = 0 (4) 

Solving Eq. (4), yielding following eigenvalue problem. 

(R,ψ) = λψ (5)  

where R is the kernel function which can be calculated by Eq. (6). 

R(Ω,Ω’) =
〈
f *

k(Ω
’) ⊗ f k(Ω)

〉
(6)  

where ⋅* and ⋅ ⊗ ⋅ represent the transpose and the averaged autocorre-
lation function (or tensor product) respectively. Detailed derivation 
processes can be referred to the supplementary material of this paper. ψj 
can be obtained by solving the eigenvalue problem in Eq. (5). Due to the 
high-order characteristic of R (node number order after discretization), 
the solution number of ψ in Eq. (5) is also huge. Furthermore, the so-
lutions of ψ are pairwise orthogonal, as shown in Eq. (7). 
(
ψ j,ψk

)
= δj,k (7)  

where δj,k is the Kronecker symbol taking 1 and 0 when j = k and j ∕= k 
respectively. Under one working condition, once the weight coefficients 

are determined, the physical field can be predicted based on Eq. (1). 
The above-mentioned technology is the classical POD. However, the 

order of the eigenvalue problem in Eq. (5) is still very high, leading to a 
huge storage requirement for the kernel function R. Note that the modes 
can also be expressed as the formation of linear combinations of snap-
shots, as shown in Eq. (8). 

ψ ′

k(Ω) =
∑

j
f j(Ω)Vj,k (8)  

where ψ ′

k(Ω) is the non-normalization mode which is the multiple 
transformation of ψk (Ω). Substituting Eq. (8) into the classical POD 
technique, the solution of the high order eigenvalue problem shown in 
Eq. (5) can be transformed into a snapshot number order eigenvalue 
problem solving the characteristic vectors Vj,k. This technology is called 
snapshot method and is applied in this paper. 

In the numerical results of PEMFCs, physical fields appear as the 
collection of discrete data points. Eqs. (1), (5), (6), (7) and (8) can be 
transformed into discrete form, as shown in Eqs. (9), (10), (11), (12) and 
(13) respectively. For conciseness, all formulas hereafter in this paper 
follow Einstein’s summation convention. 

fi,k = ψi,jbj,k (9)  

Ri,jψ j,k = λkψi,k (10)  

Ri,j =
1
n

fi,kfj,k (11)  

ψk,iψk,j = δi,j (12)  

ψ ′

i,j = fi,kVk,j (13)  

where the first indexes of f and ψ represent the index of discrete grid 
node, n represents the snapshot number. Matrix Vk,j can be selected as 
the right singular vector of the snapshot matrix fi,j, detailed derivation 
processes of which can be referred to the supplementary material. 

It should be noted that the three-dimension characteristics of a 
physical field are not reflected directly in Eq. (9). Each column of fi,k 
stores the same type of physical quantities (such as voltage) on all the 
grid nodes in the computational domain of each snapshot. For the nu-
merical solutions using one pre-generated grid system, each node itself 
contains the geometric position information. Therefore the discrete 
expression fi,j will not reduce the dimension of the physical space itself 
compared with the based numerical model. 

In summary, the centerpiece of POD is the linear transformation 
relationship between snapshot space and weight coefficient space, as 
shown in Eqs. (9) and (13). With that in mind, the general algorithm for 
the digital twin technology is as follows. (a) Design of snapshot 
configuration. (b) Generation of snapshots. (c) Extraction of the modes. 
(d) Prediction of the weight coefficients under in-situ conditions. (e) 
Construction of digital twin results by modal superposition. In the 
following these steps will be described in order. 

2.2. Snapshot configuration design 

It is necessary to design their simulating conditions before the gen-
eration of the snapshots. There are two critical concepts in the snapshot 
configuration design process. Factors represent all the variable param-
eters among the snapshots. Levels represent all the specific values of 
each factor. In this paper, a given PEMFC with straight gas flow channel 
is studied. Only current density and seven operational conditions, 
including the pressures, stoichiometric ratios, relative humidities at the 
inlets of anode and cathode gas flow channels, and the operational 
temperature are varied. They are selected as factors. The levels of each 
factor are shown in Table 1. There are a variety of test configuration 
design methods, such as full factorial design [73], orthogonal 
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experimental design [74], pairwise testing [75], uniform design [76], 
etc. Orthogonal experimental design method is a famous test configu-
ration design algorithm. However, when the factor number or level 
number is large, it is very difficult to find a software to implement 
orthogonal experimental design. In this paper, pairwise testing is 
applied and a test configuration design tool developed by Microsoft, 
Pairwise Independent Combinatorial Testing (PICT), is adopted which 
can partially cope with the above-mentioned issue. After excluding four 
groups of abnormal working conditions (represented by the condition in 
which the setting current density is higher than the limiting current 
density), 139 groups of operational parameters are finally selected from 
the design results of PICT, as shown in Table S1. 

2.3. Generation of snapshots 

The physical fields in the PEMFCs defined in Table S1 are simulated 
using the three-dimensional multi-phase non-isothermal numerical 
model with the assumption of liquid pressure continuity. The geometric 
diagrammatic sketch and grid system of the computational domain are 
shown in Fig. 1. Total node number is 482,143 (channel length: 150 
mm). The governing equations are summarized in Table 2. Details about 
corresponding source terms, boundary conditions, physical property 
parameters and coupling relationships can be referred to [57]. The 
governing equations are solved by the finite volume method in ANSYS 
FLUENT 14.0 with self-developed user-defined function (UDF). The 
numerical model in this paper is verified by comparing with Ozen’s 
experimental polarization curve [77], as shown in Fig. 2. 

The physical fields of PEMFCs under 139 groups of working condi-
tions in Table S1 are adopted as snapshots. One single simulation follows 
the strategy of calculating current density with voltage boundary con-

dition. However, in Table S1, current density is the preset condition. 
Therefore, the output voltage is adjusted until the current density rea-
ches the preset value. There are lots of snapshots to be simulated. It will 
take plenty of time if the current density of each snapshot is accurately 
adjusted to the set value. Fortunately, the accurate adjustment is not 
necessary. In this paper, when the simulated current density is adjusted 
within ± 1 % compared with the preset value, it is considered as 
convergence. In the numerical model, the preset current density and 
stoichiometric ratios only play a part in the calculation of inlet gas flow 
rate. Therefore, the actual simulated working conditions are not strictly 
coincident with the preset ones. Only the current density and stoichio-
metric ratios will slightly deviate from the preset values. The actual 
current density of each snapshot is the current density that the simula-
tion converges to. The actual stoichiometric ratios can be converted 
according to Eq. (14). 

Streal =
StpresetJpreset

Jreal
(14)  

where St and J (A⋅m− 2) represent stoichiometric ratio and current 
density respectively. The actual convergent working conditions and 
output voltage of each snapshot are shown in Table S1. In the following 
analyses and calculations related to the snapshot current densities and 
operational conditions, the actual convergent ones are adopted. It 
should be noted that this treatment can completely eliminate the 
possible error caused by the slight deviation of the current density. 
Finally, after extracting the simulation results using ‘Tecplot’ format and 
the position and topology information in the mesh file (suffix: ‘.msh’), 
the snapshot matrix for each physical field can be obtained and the 
statistics for the physical fields in each layer or surface component can 
be freely accessed. 

Table 1 
Designing levels for each factor.  

Factor Current density Temperature Pressure Relative humidity Stoichiometric ratio 
Unit A/m2 ◦C atm % – 

Level – Anode, cathode and terminals Anode Cathode Anode Cathode Anode Cathode 

1 1000 30 1 1 0 0 1.2 1.2 
2 2000 40 2 2 10 10 1.5 1.5 
3 3000 50 3 3 20 20 1.7 1.7 
4 5000 60 4 4 30 30 1.9 1.9 
5 7000 70  5 40 40 2.1 2.1 
6 9000 78   50 50 2.4 2.4 
7 11,000 82   60 60 2.7 2.7 
8 12,000 86   70 70 3 3 
9 13,000 90   80 80   
10 14,000    90 90   
11 15,000    100 100    

Fig. 1. The geometric diagrammatic sketch and grid system of the single straight channel PEMFC model.  
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2.4. Extraction of the modes 

In general, there are three methods to extract modes, 
Karhunen–Loève decomposition (KLD), principal component analysis 
(PCA) and singular value decomposition (SVD) [67]. Due to its wide 
application in signal processing [78], SVD method is adopted in this 
paper. The centerpiece of SVD is the decomposition of the snapshot 
matrix F as Eq. (15). 

F = UΣV* (15)  

where U and V are unitary matrixes, called left singular vectors and right 
singular vectors respectively, and Σ is the singular value matrix which is 
a non-square diagonal matrix. 

SVD can be implemented by various of algorithms, for instance, QR 
algorithm [79], QD algorithm [80], Jacobi algorithm [81], etc. In this 
paper, one-sided Jacobi algorithm [81] is applied and realized using 
C++ to calculate the right singular vectors. The key of one-sided Jacobi 
algorithm is to decompose right singular vector to a series of Jacobi 
transformation, as shown in Eqs. (16) and (17). 

V = J0J1J2⋯JN (16)  

Jk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
⋱

cosθk − sin θk
⋱

sinθk cosθk
⋱

1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17) 

According to Eqs. (13) and (15), after a series of Jacobi trans-
formations, the kernel matrix R = F*F can be transformed into a diag-
onal matrix, as shown in Eq. (18). 

Ψ’*Ψ’ = V*F*FV = J*
N⋯J*

2J*
1J*

0F*FJ0J1J2...JN = Σ*Σ = Σ2 (18) 

The implementation steps of one-sided Jacobi algorithm are as 
follows:  

(a) Kernel matrix initialization 

Rk = F*F, k = 0 (19)    

(b) Loop all pairs 1 ≤ p < q ≤ n. Extract the second order principal 
submatrix with the indexes of p and q in the present kernel matrix 
Rk. Execute steps (c) and (d). 

⎛

⎝
Rk

p,p Rk
p,q

Rk
q,p Rk

q,q

⎞

⎠ (20)    

(c) Single Jacobi matrix calculation. 

cot2θk =
Rk

p,p − Rk
q,q

Rk
p,q + Rk

q,p
(21) 

After one single Jacobi transformation, The second order principal 
submatrix are transformed as diagonal matrix, as shown in Eq. (22). 

(
cosθk sinθk
− sinθk cosθk

)
⎛

⎝
Rk

p,p Rk
p,q

Rk
q,p Rk

q,q

⎞

⎠

(
cosθk − sinθk
sinθk cosθk

)

=

⎛

⎝
Rk+1

p,p 0

0 Rk+1
q,q

⎞

⎠

(22)    

(d) Update the core matrix by the present Jacobi transform, as shown 
in Eq. (23). 

Rk+1 = J*
kRkJk (23) 

Table 2 
Governing equations of the 3D multi-phase non-isothermal model with the assumption of liquid pressure continuity.  

Physical quantity Solution zone Governing equation 

Density (ρ) CHs, GDLs, 
MPLs, CLs 

∂
(
ρgui

)

∂xi
= Sm 

Velocity (ui) CHs, GDLs, 
MPLs, CLs 

∂
∂xk

(
ρgukuj

ε2 ( 1 − slq
)2

)

= −
∂pg

∂xj
+

∂
∂xi

(

μe
∂

∂xi

(
uj

ε
(
1 − slq

)

))

+
∂

∂xi

(

μe
∂

∂xj

(
ui

ε
(
1 − slq

)

))

−
2
3

∂
∂xj

(

μe
∂

∂xi

(
ui

ε
(
1 − slq

)

))

+ Su,j 

Species (Yi) CHs, GDLs, 
MPLs, CLs 

∂
(
ρgukYj

)

∂xk
=

∂
∂xi

(

ρgDeff
j

∂Yj

∂xi

)

+ SYj 

Energy (T) Entire domains ∂
(
εslqρlqcp,lqulq,jT + ε

(
1 − slq

)
ρgcp,gujT

)

∂xj
=

∂
∂xi

(

keff ∂T
∂xi

)

+ SE 

Electronic potential (ϕele) BPs, GDLs, 
MPLs, CLs 0 =

∂
∂xi

(

κeff
ele

∂ϕele
∂xi

)

+ Sele 

Ionic potential (ϕion) CLs, MEM 
0 =

∂
∂xi

(

κeff
ion

∂ϕion
∂xi

)

+ Sion 

Membrane water 
content (λ) 

CLs, MEM ∂
∂xj

(nd

F
Jion,j

)
=

ρMEM
EW

∂
∂xi

(

Deff
mw

∂λ
∂xi

)

+ Smw 

Liquid water pressure (plq) GDLs, MPLs, 
CLs 0 =

∂
∂xi

(

ρlq
Kklq

μlq

∂plq

∂xi

)

+ Slq  

Fig. 2. Verification of the 3D multi-phase non-isothermal numerical model 
compared with the experimental polarization curve in Ref. [77]. 
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(e) Repeat step (b) until the whole kernel matrix is transformed into 
a diagonal matrix. All the Jacobi matrixes are obtained.  

(f) Non-normalization mode calculation: substitute Eq. (16) into Eq. 
(13).  

(g) Normalization of each mode and calculation of singular value 
according to Eqs. (24) and (18). 

ψ i =
ψ ′

i

‖ψ ′

i‖
(24) 

It is interesting to note that each singular value σi represents the 
amount of information captured by the corresponding mode. Eq. (18) 
can be transformed into the column vector form, as shown in Eq. (25). 

σi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(FVi)
*
(FVi)

√

=

⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦

(f 1 f 2 ⋯ f n)

⎛

⎜
⎜
⎝

V1,i
V2,i
⋮

Vn,i

⎞

⎟
⎟
⎠

⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦

= ‖ψ ’
i‖ (25) 

Therefore, the singular value of each mode can be understood as the 
coefficient divided in the normalization step (g). Considering that a 
series of Jacobi rotation transformations Jk don’t change the magnitude 
of the information, the bigger the coefficient σi is, the more important 
the corresponding mode to the original physical field is. Therefore, 
singular value can be understood as the amount of information captured 
by a mode. 

2.5. Weight coefficient calculation 

The weight coefficients at the snapshot conditions can be calculated 
by projecting snapshots on the mode space, as shown in Eq. (26). 

bi,j = ψk,i fk,j (26) 

Furthermore, derived from Eqs. (9) and (26), obviously, the snapshot 
space fj and the weight coefficient space bj are isomorphic according to 
the definition. Therefore, the weight coefficient space can completely 
represent the original PEMFC problem without reducing the amount of 
information contained in the snapshot data. 

After sorting the modes by the descending order of their respective 
singular values, the order of the problem can be further reduced. Due to 
the fact that the information concentration of the mode can be guar-
anteed in POD, as shown in Eq. (2), with the increase of the mode order, 
the amount of information will be greatly reduced. High order modes 
containing small amount of information can be ignored. The number of 
the modes considered and the proportion of the total singular values 
captured by the ignored modes are called truncation order l and trun-
cation error Δ respectively, as shown in Eqs. (27) and (28). 

f j =
∑n

i=1
bi,jψ i ≈

∑l

i=1
bi,jψ i (27)  

Δ =

∑n
i=l+1σi
∑n

i=1σi
(28) 

In practice, there are many cases in which the working conditions are 
within the ranges prespecified in Table 1. None of a working condition is 
exactly the same as any of the design snapshots in Table S1. They are 
called off-design conditions. Using the same modes extracted from the 
snapshots, the physical fields under off-design working conditions can 
also be quickly and accurately predicted, called extrapolation. It is this 
remarkable characteristic that makes POD can be applied in PEMFC 
engineering for digital twin. It should be noted that even in the ranges of 
the design working conditions shown in Table 1, it is also difficult to 
predict the weight coefficients for the solution desired directly according 
to the weight coefficients of the original snapshots. This is because, on 
the one hand, the non-linear characteristics of the numerical model. For 
example, the source terms of the voltage field in catalyst layers are non- 

linearly relative to lots of other physical fields in Table 2 [57]. On the 
other hand, the simulated snapshots are finite while the number of the 
studied factors is up to 8, resulting in a prediction error. 

The extrapolation process can be abstracted to the following math-
ematical models: giving a series of snapshot vectors bi under their 
respective input vectors xi, how to predict the vector b’ under an off- 
design vector x’. In the conventional POD technology in the commu-
nity of thermofluidic engineering, interpolation method and Galerkin 
projection method are widely applied to predict b’ [65]. However, POD 
interpolation method requires a full factorial snapshot configuration 
design method. According to the design levels in Table 1, 15.33 million 
snapshots need to be simulated, which will take about 28 millen-
nium⋅cores. The required computation resource is unrealistic. With re-
gard to the Galerkin projection method [82], the extremely complex 
coupling characteristics of the governing equations in Table 2 lead to a 
great difficulty. 

In mathematics, regression is also an effective method to resolve this 
issue. Regression guarantees that b’ in the previous paragraph can be 
predicted based on a relatively small number of snapshots, which is also 
the reason for the discussion of the test configuration design method in 
Section 2.2. In the regression method, the relationship between input 
and output vectors b = g (x) is modelled according to the snapshot set 
firstly. And then the vector b’ can be predicted by substituting the cor-
responding input vector x’ into the relationship g. It is very difficult to 
model g by conventional mathematical regression methods due to a high 
dimension of input vector x. In the past decade, machine learning 
technology has been developed rapidly to resolve the prediction prob-
lem in lots of domains. In this paper, a machine learning model, the 
multiple adaptive regression spline (MARS) [83], is applied by self- 
programming based on Python toolkit. 

Finally, after the prediction of b’, the physical field can be extrapo-
lated by Eq. (29). 

f̂
′

i ≈
∑l

j=1
b̂

′

jψi,j (29)  

where ̂⋅ represents the predicted value. 
From the above discussion, it can be seen that there are three types of 

prediction methods in this paper: CFD simulation, reconstruction and 
digital twin. The general purposes of these methods are coincident, to 
predict the 3D multi-physics fields in PEMFCs. However, their algo-
rithms and application scopes are quite different. The conventional 
simulation method is implemented by the discretization of the govern-
ing equations and the solution of the linear simultaneous equations with 
the order of control volume number. It is time consuming thus can only 
be applied directly in ex-situ analyses. Simulation provides snapshots as 
the training set of the other two methods. The reconstruction is imple-
mented by Eq. (27). The modes and weight coefficients are all known 
beforehand in the prediction process. The prediction time of the 
reconstruction is the least. It can only be applied in the snapshot con-
ditions shown in Table S1. The digital twin is implemented by Eq. (29). 
The modes are known beforehand. The weight coefficients are predicted 
by the pre-trained machine leaning model with the order of truncation 
order (less than snapshot number). Thus its prediction time is a little 
longer than the reconstruction. It can be applied in most of the condi-
tions within the ranges prespecified in Table 1 (for instance: current 
density 1000–15,000 A⋅m-2, etc.). 

3. Results and discussion 

After implementing the algorithm in Section 2 for each physical field, 
digital twin can finally be realized. In this section, the mode extraction, 
reconstruction and digital twin results of various physical fields, voltage, 
temperature, membrane water content, liquid water pressure and liquid 
water saturation, are exhibited and analyzed. In the following, modes of 
each physical field will firstly be extracted in Section 3.1, followed by 
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the reconstruction of physical fields under the snapshot conditions in 
Section 3.2, and finally the digital twin will be presented for randomly 
selected current densities and operational conditions in Section 3.3. 

3.1. Characteristics of extracted modes 

This subsection exhibits the mode extraction results. In POD, one 
mode may capture most of the information. In this situation, a potential 
small relative deviation for the prediction of the weight coefficient of 
this mode will result in a large deviation for the predicted physical field, 
which may reduce or even submerge the influence of other higher order 
modes on the physical field. For example, the temperature difference in 
one PEMFC is usually several degrees centigrade while the range of the 
operational temperature is 60 ◦C. The above-referred mode capturing 
the datum values will appear if temperature fields are directly adopted 
to generate snapshot matrix in POD. However, it is not necessary to 
extract this information from the snapshots because it is known be-
forehand. With that in mind, the datum values of temperature, anode 
operational pressure and cathode operational pressure in each snapshot 
are subtracted from the temperature, anode liquid water pressure and 
cathode liquid water pressure fields respectively, which are selected as 
snapshot matrices. 

The orthogonality of modes is firstly validated. According to the 
extracted modes, the mean value of the principal diagonal elements, the 
standard deviation of the principal diagonal elements and the L1 norm 
of the non-principal diagonal elements in Eq. (12) are shown in Table 3. 
We can see that the orthogonality deviations of the modes are tiny. 

The distribution contours of the first four modes for the voltage field 
are presented in Fig. 3. As shown, the first mode represents the general 
magnitude of the voltage field in most layers. The second mode mainly 
capture the information of the voltage variety inconsistency in the GDLs, 
MPLs and CLs. Other modes correct the voltage field in several local 
regions, represented by the region near CH inlet and outlet surfaces. The 
modes for other physical fields show similar distribution patterns, as 
shown in the supplementary material, and will not be presented here. 

The information proportion captured by each mode and the infor-
mation accumulation proportion captured by the first several modes are 
shown in Fig. 4 and Fig. 5 respectively. Each curve in Fig. 4 shows the 
information proportion of each mode as a function of mode order. 
Generally speaking, with the increase of the mode order, the amount of 
information captured by the mode decreases rapidly, which is consistent 
with the original intention for further order reduction. The truncation 
orders to reach different truncation errors for each physical field are 
shown in Table 4. For example, if it is needed to reach 0.01 % truncation 
error for the predicted voltage, then 24 modes should be included in Eqs. 
(27) and (29). 

Come here to discuss the mode-captured information for each 
physical field shown in Fig. 4. 

For voltage field, the first mode captures a tremendous amount of the 

information. It alone captures 98.6 % of the total information. This 
means that the first mode represents the most important characteristic of 
voltage field. Therefore, the accurate prediction of the first order weight 
coefficient is of critical importance to the prediction of output voltage 
and voltage field. The first two modes capture 99.7 % of the total in-
formation. The later modes capture much smaller amount of informa-
tion. For example, the third and sixth modes only capture 0.16 % and 
0.02 % of the total information respectively. Although this, not all of the 
third to 139th modes can be neglected. This is because that these modes 
represent the contribution of the non-linear characteristics (such as 
source term) or local characteristics to the total information. An arbi-
trary truncation of modes may lead to the loss of local field 
characteristics. 

For relative temperature field, the first mode captures 70.2 % of the 
total information, which is much less than that in the voltage field. This 
is because that in most of the regions in PEMFC, the Laplace’s equation is 
the governing equation of voltage, leading to a low complexity of the 
voltage field. Therefore, the information is centralized in the first two 
modes. However, a convection diffusion equation with complex 
nonlinear source terms is solved for thermal simulation in most of the 
regions. More characteristics are necessary for the accurate description 
of the temperature field. Therefore, the information proportion captured 
by the first mode is lower. 

For liquid water saturation field and relative liquid water pressure 
field, the first modes capture 65.0 % and 65.4 % of the total information 
respectively, which is also much less than that in the voltage field. The 
information proportions of the same order modes in the two fields are 
nearly identical. This is because that there is an obvious conversion 
relationship between the two fields, as shown in Eqs. (30) and (31). 

pca = pg − plq = σcosθ
(

ε
K0

)0.5

G
(
slq
)

(30)  

G
(
slq
)
=

⎧
⎨

⎩

1.42
(
1 − slq

)
− 2.12

(
1 − slq

)2
+ 1.26

(
1 − slq

)3 θ < 90◦

1.42slq − 2.12s2
lq + 1.26s3

lq θ > 90◦

(31)  

where pca (Pa), pg, plq, σ (N⋅m− 1), θ, ε, K0 (m2) and slq are capillary 
pressure, gas pressure, liquid water pressure, surface tension, contact 
angle, porosity, permeability and liquid water saturation respectively. 
The two physical fields show different characteristics. For example, the 
liquid water saturation field jumps across the interface between two 
layers while the liquid water pressure field is continuous. However, they 
are essentially the same, representing liquid water field. Considering the 
intuitiveness, the liquid water saturation field is selected hereafter in 
this paper. 

For membrane water content field, the first mode captures 68.4 % of 
the total information, which is close to that in the liquid water field. This 
is because it is membrane water that carries protons across the mem-
brane while liquid water is generated from the cathode electrochemical 
reaction. For a given working condition, the membrane water required 
to carry protons and the liquid water generated are both closely related 
to the electrochemical reaction rate. Furthermore, there is a direct phase 
change relationship between membrane water and liquid water. 
Therefore, the information proportion curves of the two fields are close 
to each other. 

3.2. Reconstruction of cases identical to snapshot 

Physical fields under the snapshot conditions can be reconstructed 
according to Eq. (27) after selecting different truncation orders. For each 
physical field in PEMFCs, on the one hand, there are a series of repre-
sentative local values, for instance, output voltage, maximum temper-
ature, maximum membrane water content and maximum liquid water 
saturation. On the other hand, it is necessary to have a good prediction 

Table 3 
Mode orthogonality validation for each physical field.   

Mean value of the 
principal diagonal 
elements 

Standard deviation 
of the principal 
diagonal elements 

L1 norm of the 
non-principal 
diagonal elements 

Voltage  1.000 2.793 × 10− 10 6.875 × 10− 11 

Relative 
temperature  

1.000 2.160 × 10− 10 5.991 × 10− 11 

Membrane 
water content  

1.000 3.339 × 10− 10 9.450 × 10− 11 

Relative liquid 
water 
pressure  

1.000 2.732 × 10− 10 6.981 × 10− 11 

Liquid water 
saturation  

1.000 2.569 × 10− 10 7.222 × 10− 11  
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of the whole field. The prediction deviations of them are called local 
deviation and global deviation respectively. The global relative devia-
tion of each snapshot can be defined by L2 norm, as shown in Eq. (32). 

δj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

i

(
fi,j − f̂ i,j

)2

∑

i
f 2

i,j

√
√
√
√
√
√ (32) 

Selections of one mode (1st mode) and numbers of modes with 
truncation errors of 1 %, 0.1 % and 0.01 % are applied for the snapshot 
reconstruction. The local and global relative deviations of the four 
studied fields are shown in Figs. 6–9 respectively. From Fig. 6 (a), it can 
be seen that for voltage field, when the mode number is selected to reach 
a truncation error of 1 % (2 modes as shown in Table 4), then all the 
snapshots have the deviations around 1 % shown by the black points. As 
shown in the figures, generally speaking, with the reduction of the 
truncation error, the local and global relative deviations decrease 
significantly by several orders of magnitude. Compared with the local 
relative deviation, the global relative deviation is more concentrated 
among different snapshots. For example, the red points in Fig. 8 (a) are 
scattered while those in Fig. 8 (b) are concentrated. This is because POD 
technology is based on the characteristic extraction of the whole field, 
while the local values represent the extreme points of the physical fields. 
They are obtained according to the statistical results of the predicted 
fields. Therefore, more potential prediction uncertainties among snap-
shots are introduced for the local values. 

For voltage field, as shown in Fig. 6, when truncation order is equal 
to 1, the reconstructed output voltages for most of the snapshots reach a 
relative deviation of within 5.2 %. This is also because the first POD 
mode captures the most dominant information, as analyzed above. 
However, large relative deviations will be introduced for several snap-
shots. For example, the output voltage relative deviations of the 93rd 
and 117th snapshots are 17.9 % and 77.3 % respectively. This is because 
the working conditions of the cathode sides in the two snapshots are 
disgusting. Their current densities are up to 1.5 and 1.3 A/cm2, while the 
operational pressures are only 1 atm, the temperatures are high (82 ◦C) 
and the cathode stoichiometric ratios are low (1.5 and 1.2). On the one 
hand, under these working conditions, the output voltages themselves 

Fig. 3. The first four modes for voltage field. (In each mode, the left and right parts represent anode and cathode respectively. The channel inlet surfaces are located 
on the bottom. Intermediate cross sections perpendicular to the x and z axes are selected as typical surfaces to present the 3D fields. The scale factor in the channel 
length direction, z axis, is 0.0465 for visualization. The similar presentation pattern is adopted hereafter in this paper.). 

Fig. 4. The information proportion of each mode as a function of mode order 
for each physical field. 

Fig. 5. The information accumulation proportion of the first i modes as a 
function of mode number i for each physical field. 

Table 4 
Truncation orders to reach different truncation errors for each physical field.  

Truncation error 1% 0.1% 0.01% 

Physical Field Truncation order 

Voltage 2 5 24 
Relative temperature 29 84 123 
Membrane water content 64 119 135 
Relative liquid water pressure 66 118 134 
Liquid water saturation 68 117 134  
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are small, resulting in the situation that information captured by other 
modes reaches the same order of magnitude as the first one. For 
example, the weight coefficients of the first and second modes in the 
117th snapshot are 11.01 and 8.37 respectively. Therefore, truncation at 
the second mode will lead to a high relative deviation. On the other 
hand, at the above working condition, the fuel cell is working at the part 
of the polarization where concentration is dominant. Therefore, in the 
regions with strongly nonlinear characteristics, more nonlinear char-
acteristics captured by higher order modes are necessary in order to 
accurately predict the voltage field. 

For temperature field, as shown in Fig. 7, when truncation order is 
equal to 1, the global relative deviations are slightly higher than that of 
the voltage field. This is consistent with the information accumulation 
proportion shown in Fig. 5. For membrane water content and liquid 
water saturation fields, as shown in Fig. 8 and Fig. 9, respectively, when 
truncation order is equal to 1, the relative deviations are higher than the 
above two fields, up to more than 10 %. More modes are necessary in 

order to accurately predict these fields. According to the above analyses 
and Figs. 6-9, the truncation error is selected as 0.01 % in order to 
comprehensively guarantee the reconstruction accuracy of each recon-
structed field under various working conditions as much as possible. 

Due to their importance in the output voltage, heat and water 
managements in PEMFCs, the reconstructed 3D contours of the voltage, 
temperature and liquid water saturation fields are discussed taking the 
117th snapshot as an example. The comparison between the simulation 
results and reconstruction results are shown in Figs. 10-12 respectively. 
We can see that when truncation error equal to 0.01 %, the recon-
structed snapshot results are nearly identical with the simulation results, 
verifying the accuracy of the reconstruction. Furthermore, as shown in 
Fig. 11, the local temperature in this snapshot reaches 130 ◦C. This is 
because that this case has a high current density but low output voltage, 
the efficiency of the PEMFC is very low, leading to a great amount of 
energy dissipation in the form of heat. 

Fig. 6. Reconstruction relative deviation of voltage field for each snapshot under different truncation order or truncation error. (a) Output voltage relative deviation. 
(b) Global relative deviation. 

Fig. 7. Reconstruction relative deviation of temperature field for each snapshot under different truncation order or truncation error. (a) Maximum temperature 
relative deviation. (b) Global relative deviation. 
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3.3. Digital twin for 20 cases of random working conditions 

This subsection shows the comparison between the digital twin and 
simulation results under random off-design working conditions. Twenty 
cases of working conditions are randomly generated within the param-
eter ranges shown in Table 1. The design and actual convergent working 
conditions are shown in Table S2. 

The local and global relative deviations for each physical field are 
shown in Figs. 13 (a) and (b) respectively. The mean deviations of the 20 
cases for the output voltage and global voltage field are 5.8 % and 5.7 % 
respectively. Except the fourth case (the fourth red point in Fig. 13 (a), 
16.8 %), the output voltage relative deviations under other conditions 
are all within 10.8 %. In Case 4, the working condition is disgusting. The 
stronger nonlinear characteristics lead to a lower digital twin accuracy. 
The output voltage relative deviations under Cases 5, 9, 17, 18 and 20 

are about 9 %, larger than that under other conditions. This is due to 
relatively higher current densities. Furthermore, their working condi-
tions are not so disgusting as Case 4. For example, their stoichiometric 
ratios are higher, leading to lower relative deviations. It should be noted 
that there are also several cases with large current densities but high 
prediction accuracy (about 2 %), including Cases 7, 11, 12 and 16. This 
may because that these cases have working conditions closer to the 
snapshot conditions. 

The global relative deviation of the predicted temperature field 
under each working condition is within 3.9 % while the mean value is 
1.3 %. The relative deviations of field maximum temperatures are within 
10.3 %. The deviations of other physical fields are relatively higher. For 
the liquid water saturation field, the mean global relative deviation is 
12.0 %. Except four cases with relative deviations of about 20 %, the 
global relative deviations of other cases are all within 15 %. For the 

Fig. 8. Reconstruction relative deviation of membrane water content field for each snapshot under different truncation order or truncation error. (a) Maximum 
membrane water content relative deviation. (b) Global relative deviation. 

Fig. 9. Reconstruction relative deviation of liquid water saturation for each snapshot under different truncation order or truncation error. (a) Maximum liquid water 
saturation relative deviation. (b) Global relative deviation. 

F. Bai et al.                                                                                                                                                                                                                                       



Applied Energy 324 (2022) 119763

11

membrane water content field, the global relative deviations for most 
cases are within 15 % and the mean global deviation is 8.9 %. In general, 
the global relative deviations of all the physical fields in the test set 
range within 0.11–24.01 %. 

The reason why the digital twin deviations are higher than the de-
viations of the reconstructed results by POD are as follows. On the one 
hand, due to the large amount of computational workload, the snapshot 
number is limited. On the other hand, the coupling characteristics of 
physical fields in PEMFCs are complex, resulting in a regression diffi-
culty for weight coefficients under random working conditions within 
wide ranges. 

The 10th case is selected as an example to exhibit the contours of 
voltage, temperature and liquid water saturation fields obtained by 
digital twin technology compared with numerical results, as shown in 
Figs. 14-16 respectively. For voltage field, from Fig. 14 we can see that 
the digital twin voltage field is very close to the simulation one. The 

digital twin results can capture the output voltage and voltage distri-
bution information well. For temperature and liquid water saturation 
fields, from Fig. 15 and Fig. 16 we can see that the digital twin tech-
nology can predict the overall distribution regular patterns and various 
local distribution characteristics well, for instance, higher temperatures 
in the membrane under middle posterior segment of the channel, the 
jump phenomenon of liquid water saturation across the interface be-
tween two layers, the accumulation phenomenon of liquid water under 
the rib, etc. The effectiveness of the digital twin technology is validated. 
However, the digital twin deviation of the maximum temperature is 
relatively larger. This is because that temperature field is affected by 
various factors represented by irreversible heat, activation heat, ohmic 
heat and latent heat source term. Therefore, the accurate prediction of 
temperature field is more difficult compared with voltage field. 

It is interesting to compare the prediction time required for the 
simulation and the digital twin. For the PEMFC studied in this paper, the 

Fig. 10. Validation of voltage field reconstructed result for the 117th snapshot compared with the simulation result. (a) Simulation. (b) Reconstruction.  

Fig. 11. Validation of temperature field reconstructed result for the 117th snapshot compared with the simulation result. (a) Simulation. (b) Reconstruction.  
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simulation times of the snapshots differ a lot due to the different non- 
linear characteristics among snapshots. The simulation time is about 
several hours to days even by 16-core parallel server, Intel(R) Xeon(R) 
E5-2670 @ 2.60 GHz. As for the digital twin, the prediction times of 
different conditions are identical due to the same calculation 
complexity. In the digital twin technology, there are mainly five steps: 
(1) reading modes into Random Access Memory (RAM); (2) predicting 
weight coefficients by MARS; (3) constructing physical fields by Eq. 
(29); (4) calculating field local or average values; (5) outputting physical 
fields into the hard disk. For the prediction of one single physical field in 
one case, in average, the time consumptions of the five steps are 39.774 
s, 0.018 s, 0.894 s, 0.001 s (neglected) and 2.088 s respectively by 1-core 
personal computer, Intel(R) Core(TM) i7-10750H @ 2.60 GHz. The 
entire time consumption is 42.775 s. Furthermore, in consecutive in-situ 
digital twins, step (1) only needs to be executed once in the initialization 
process. One single digital twin and output times can be regarded as 
0.913 s and 2.088 s respectively. 

Finally, it should be emphasized that the digital twin technology is a 
data-driven machine learning prediction method rather than an 

accelerating convergence technique for CFD simulation. A large number 
of snapshots need to be conducted by ex-situ CFD which is also time- 
consuming. For example, the simulation of all the snapshots in 
Table S1 costs about two months. It is the quick response that is highly 
required for PEMFC in-situ prediction, which is at the expense of lots of 
ex-situ simulation time. 

4. Conclusion 

In this research, a complete 3D virtualization-multi-physics digital 
twin for PEMFCs is realized by POD technology. 139 snapshots are 
designed using Pairwise Independent Combinatorial Testing, and 
simulated based on the three-dimensional two-phase non-isothermal 
numerical model with the assumption of liquid pressure continuity. 
Modes for voltage, temperature, membrane water, liquid water pressure 
and liquid water saturation fields are extracted. 20 cases of in-situ off- 
design working conditions are randomly generated within entire current 
density range and the effectiveness of the digital twin technology is 
validated in the aspects of voltage, temperature, liquid water saturation 

Fig. 12. Validation of liquid water saturation field reconstructed result for the 117th snapshot compared with the simulation result. (a) Simulation. (b) 
Reconstruction. 

Fig. 13. Digital twin result relative deviations of each physical field for 20 cases of random working conditions compared with simulation results. (a) Local relative 
deviation. (b) Global relative deviation. (The local relative deviation of each physical field is defined the same as that in the reconstruction process inFigs. 6-9.). 
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and membrane water content fields. The main conclusions of this paper 
are summarized as follows:  

(1) The modes extracted from the snapshots are pairwise orthogonal 
with deviations of 5.991 × 10− 11 ~ 3.339 × 10− 10. The mode 
capturing maximum information represents the global magnitude 
of the field, while higher order modes represent the nonlinear or 
local characteristics of the field. The closer the correlation be-
tween two physical fields is, the more identical the information 
proportion curves of the modes are.  

(2) Within the scope of the studied snapshots, only 24 modes are 
necessary for voltage field prediction to reach a truncation error 
of 0.01 %, while most of the modes should be applied for other 
physical fields. 

(3) With the reduction of the truncation error, snapshot reconstruc-
tion relative deviations decrease significantly by several orders of 
magnitude. The reconstruction physical fields are nearly identical 
with the simulation results when truncation error equals to 0.01 
%.  

(4) Within the scope of the studied conditions and fields, the global 
deviations of digital twin technology range within 0.11–24.01 %. 
For output voltage, mean relative deviation is 5.8 % while most of 
the deviations are within 10.8 %. For temperature field, global 
relative deviations are within 3.9 %. For liquid water saturation 
field, the mean global relative deviation is 12.0 %. Except four 
cases with relative deviations of about 20 %, the global relative 
deviations under other cases are all within 15 %.  

(5) For the fuel cell studied, the digital twin technology successfully 
captures the overall distribution regular patterns and various 

Fig. 14. Validation of the voltage field digital twin result for the 10th case compared with the simulation result. (a) Simulation. (b) Digital twin.  

Fig. 15. Validation of the temperature field digital twin result for the 10th case compared with the simulation result. (a) Simulation. (b) Digital twin.  
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local distribution characteristics in 0.913 s, which can realize the 
intention of in-situ operation control. 
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